线性码中的随机矩阵与Wigner的半圆定律2

Chin Hei Chan, Maosheng Xiong
{"title":"线性码中的随机矩阵与Wigner的半圆定律2","authors":"Chin Hei Chan, Maosheng Xiong","doi":"10.1109/IWSDA46143.2019.8966107","DOIUrl":null,"url":null,"abstract":"Recently we considered a new normalization of matrices obtained by choosing distinct codewords at random from linear codes over finite fields and proved that under some natural algebraic conditions their empirical spectral distribution converges to Wigner’s semicircle law as the length of the codes goes to infinity. One of the conditions is that the dual distance of the codes is at least 5. In this report, by employing more advanced techniques related to Stieltjes transform, we show that the dual distance being at least 5 is sufficient to ensure the convergence. We also obtain a fast convergence rate in terms of the length of the code.","PeriodicalId":326214,"journal":{"name":"2019 Ninth International Workshop on Signal Design and its Applications in Communications (IWSDA)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Random Matrices from Linear Codes and Wigner’s Semicircle Law II\",\"authors\":\"Chin Hei Chan, Maosheng Xiong\",\"doi\":\"10.1109/IWSDA46143.2019.8966107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently we considered a new normalization of matrices obtained by choosing distinct codewords at random from linear codes over finite fields and proved that under some natural algebraic conditions their empirical spectral distribution converges to Wigner’s semicircle law as the length of the codes goes to infinity. One of the conditions is that the dual distance of the codes is at least 5. In this report, by employing more advanced techniques related to Stieltjes transform, we show that the dual distance being at least 5 is sufficient to ensure the convergence. We also obtain a fast convergence rate in terms of the length of the code.\",\"PeriodicalId\":326214,\"journal\":{\"name\":\"2019 Ninth International Workshop on Signal Design and its Applications in Communications (IWSDA)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Ninth International Workshop on Signal Design and its Applications in Communications (IWSDA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWSDA46143.2019.8966107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Ninth International Workshop on Signal Design and its Applications in Communications (IWSDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSDA46143.2019.8966107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了在有限域上随机选取不同码字的线性码所得到的矩阵的一种新的归一化方法,并证明了在一些自然代数条件下,当码长趋于无穷时,其经验谱分布收敛于Wigner半圆定律。条件之一是码的对偶距离至少为5。在本报告中,我们采用了与Stieltjes变换相关的更先进的技术,证明了对偶距离至少为5足以保证收敛。在编码长度方面,我们也获得了较快的收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Random Matrices from Linear Codes and Wigner’s Semicircle Law II
Recently we considered a new normalization of matrices obtained by choosing distinct codewords at random from linear codes over finite fields and proved that under some natural algebraic conditions their empirical spectral distribution converges to Wigner’s semicircle law as the length of the codes goes to infinity. One of the conditions is that the dual distance of the codes is at least 5. In this report, by employing more advanced techniques related to Stieltjes transform, we show that the dual distance being at least 5 is sufficient to ensure the convergence. We also obtain a fast convergence rate in terms of the length of the code.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信