本文提出了一种针对聋人的方法

Zhi-Wei Chen, Yu-Cheng Lin, C. Chiang
{"title":"本文提出了一种针对聋人的方法","authors":"Zhi-Wei Chen, Yu-Cheng Lin, C. Chiang","doi":"10.1109/ICPR.2006.706","DOIUrl":null,"url":null,"abstract":"This paper presents the design and implementation of a fingertip writing interface which recognizes the moving trajectory of the user’s fingertip into alphabets and numerals. The processes are divided into tracking and recognition. For the fingertip tracking process, the interface employees techniques including background subtraction, skincolor modeling, finger extraction, fingertip positioning and Kalman filter prediction. To recognize the fingertip trajectories, four types of features are defined for recognition with Hidden Markov Models. According to our performance evaluation, the writing interface achieves an accuracy rate of 98% for fingertip tracking and reaches a recognition accuracy as high as 93% for alphabets and numerals, demonstrating its potential to serve as a feasible human-machine interface of natural modality.","PeriodicalId":236033,"journal":{"name":"18th International Conference on Pattern Recognition (ICPR'06)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"In this paper, an approach for deaf-people\",\"authors\":\"Zhi-Wei Chen, Yu-Cheng Lin, C. Chiang\",\"doi\":\"10.1109/ICPR.2006.706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the design and implementation of a fingertip writing interface which recognizes the moving trajectory of the user’s fingertip into alphabets and numerals. The processes are divided into tracking and recognition. For the fingertip tracking process, the interface employees techniques including background subtraction, skincolor modeling, finger extraction, fingertip positioning and Kalman filter prediction. To recognize the fingertip trajectories, four types of features are defined for recognition with Hidden Markov Models. According to our performance evaluation, the writing interface achieves an accuracy rate of 98% for fingertip tracking and reaches a recognition accuracy as high as 93% for alphabets and numerals, demonstrating its potential to serve as a feasible human-machine interface of natural modality.\",\"PeriodicalId\":236033,\"journal\":{\"name\":\"18th International Conference on Pattern Recognition (ICPR'06)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th International Conference on Pattern Recognition (ICPR'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2006.706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Conference on Pattern Recognition (ICPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2006.706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文设计并实现了一种指尖书写界面,该界面可以识别用户指尖的移动轨迹,并将其转换为字母和数字。该过程分为跟踪和识别。对于指尖跟踪过程,界面采用了背景减除、肤色建模、手指提取、指尖定位和卡尔曼滤波预测等技术。为了识别指尖轨迹,定义了四种类型的特征用于隐马尔可夫模型的识别。根据我们的性能评估,书写界面对指尖跟踪的准确率达到98%,对字母和数字的识别准确率高达93%,显示了其作为一种可行的自然模态人机界面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In this paper, an approach for deaf-people
This paper presents the design and implementation of a fingertip writing interface which recognizes the moving trajectory of the user’s fingertip into alphabets and numerals. The processes are divided into tracking and recognition. For the fingertip tracking process, the interface employees techniques including background subtraction, skincolor modeling, finger extraction, fingertip positioning and Kalman filter prediction. To recognize the fingertip trajectories, four types of features are defined for recognition with Hidden Markov Models. According to our performance evaluation, the writing interface achieves an accuracy rate of 98% for fingertip tracking and reaches a recognition accuracy as high as 93% for alphabets and numerals, demonstrating its potential to serve as a feasible human-machine interface of natural modality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信