评估MapReduce在多核和多处理器系统中的应用

Colby Ranger, R. Raghuraman, Arun Penmetsa, G. Bradski, C. Kozyrakis
{"title":"评估MapReduce在多核和多处理器系统中的应用","authors":"Colby Ranger, R. Raghuraman, Arun Penmetsa, G. Bradski, C. Kozyrakis","doi":"10.1109/HPCA.2007.346181","DOIUrl":null,"url":null,"abstract":"This paper evaluates the suitability of the MapReduce model for multi-core and multi-processor systems. MapReduce was created by Google for application development on data-centers with thousands of servers. It allows programmers to write functional-style code that is automatically parallelized and scheduled in a distributed system. We describe Phoenix, an implementation of MapReduce for shared-memory systems that includes a programming API and an efficient runtime system. The Phoenix runtime automatically manages thread creation, dynamic task scheduling, data partitioning, and fault tolerance across processor nodes. We study Phoenix with multi-core and symmetric multiprocessor systems and evaluate its performance potential and error recovery features. We also compare MapReduce code to code written in lower-level APIs such as P-threads. Overall, we establish that, given a careful implementation, MapReduce is a promising model for scalable performance on shared-memory systems with simple parallel code","PeriodicalId":177324,"journal":{"name":"2007 IEEE 13th International Symposium on High Performance Computer Architecture","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1092","resultStr":"{\"title\":\"Evaluating MapReduce for Multi-core and Multiprocessor Systems\",\"authors\":\"Colby Ranger, R. Raghuraman, Arun Penmetsa, G. Bradski, C. Kozyrakis\",\"doi\":\"10.1109/HPCA.2007.346181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper evaluates the suitability of the MapReduce model for multi-core and multi-processor systems. MapReduce was created by Google for application development on data-centers with thousands of servers. It allows programmers to write functional-style code that is automatically parallelized and scheduled in a distributed system. We describe Phoenix, an implementation of MapReduce for shared-memory systems that includes a programming API and an efficient runtime system. The Phoenix runtime automatically manages thread creation, dynamic task scheduling, data partitioning, and fault tolerance across processor nodes. We study Phoenix with multi-core and symmetric multiprocessor systems and evaluate its performance potential and error recovery features. We also compare MapReduce code to code written in lower-level APIs such as P-threads. Overall, we establish that, given a careful implementation, MapReduce is a promising model for scalable performance on shared-memory systems with simple parallel code\",\"PeriodicalId\":177324,\"journal\":{\"name\":\"2007 IEEE 13th International Symposium on High Performance Computer Architecture\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1092\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE 13th International Symposium on High Performance Computer Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCA.2007.346181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 13th International Symposium on High Performance Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2007.346181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1092

摘要

本文评估了MapReduce模型在多核和多处理器系统中的适用性。MapReduce是由谷歌创建的,用于在拥有数千台服务器的数据中心上开发应用程序。它允许程序员编写在分布式系统中自动并行和调度的函数式代码。我们描述了Phoenix,一个用于共享内存系统的MapReduce实现,它包括一个编程API和一个高效的运行时系统。Phoenix运行时自动管理线程创建、动态任务调度、数据分区和跨处理器节点的容错性。我们研究了Phoenix在多核和对称多处理器系统中的应用,并评估了它的性能潜力和错误恢复特性。我们还将MapReduce代码与用底层api(如p线程)编写的代码进行了比较。总的来说,我们建立了一个谨慎的实现,MapReduce是一个很有前途的模型,可以用简单的并行代码在共享内存系统上扩展性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluating MapReduce for Multi-core and Multiprocessor Systems
This paper evaluates the suitability of the MapReduce model for multi-core and multi-processor systems. MapReduce was created by Google for application development on data-centers with thousands of servers. It allows programmers to write functional-style code that is automatically parallelized and scheduled in a distributed system. We describe Phoenix, an implementation of MapReduce for shared-memory systems that includes a programming API and an efficient runtime system. The Phoenix runtime automatically manages thread creation, dynamic task scheduling, data partitioning, and fault tolerance across processor nodes. We study Phoenix with multi-core and symmetric multiprocessor systems and evaluate its performance potential and error recovery features. We also compare MapReduce code to code written in lower-level APIs such as P-threads. Overall, we establish that, given a careful implementation, MapReduce is a promising model for scalable performance on shared-memory systems with simple parallel code
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信