用于宽带和高效光子天线系统的充气基板集成波导技术

S. Lemey, O. Caytan, Quinten Van den Brande, Igor Lima de Paula, L. Bogaert, Haolin Li, J. V. Kerrebrouck, A. Reniers, B. Smolders, J. Bauwelinck, P. Demeester, G. Torfs, D. Ginste, S. Verstuyft, B. Kuyken, H. Rogier
{"title":"用于宽带和高效光子天线系统的充气基板集成波导技术","authors":"S. Lemey, O. Caytan, Quinten Van den Brande, Igor Lima de Paula, L. Bogaert, Haolin Li, J. V. Kerrebrouck, A. Reniers, B. Smolders, J. Bauwelinck, P. Demeester, G. Torfs, D. Ginste, S. Verstuyft, B. Kuyken, H. Rogier","doi":"10.23919/URSIGASS49373.2020.9232291","DOIUrl":null,"url":null,"abstract":"The combination of microwave photonics, radio-over-fiber (RoF) and air-filled substrate-integrated-waveguide (AFSIW) technology opens many promising pathways to realize robust, broadband, and highly-integrated multi-antenna systems that address the stringent demands of (beyond-)5G wireless applications. In this paper, we demonstrate the potential of such a multi-disciplinary approach by discussing three designs. First, two AFSIW-based photonic-enabled remote antenna units (RAUs) are presented for downlink sub-6GHz RoF. By adopting an extensive full-wave/circuit co-simulation model, the power transfer between the optical and electrical domain is maximized. In the first design, this is done by using a Chebyshev impedance matching network, while the second design exploits conjugate matching. Second, a hybrid integration strategy for compact, broadband and highly efficient mmWave antennas is introduced. Its excellent performance is proven by realizing an on-chip AFSIW stacked patch antenna. In addition, the design facilitates compact integration of the opto-electronic front-end, making it attractive for the realization of next-generation photonic-enabled mmWave planar multi-antenna systems.","PeriodicalId":438881,"journal":{"name":"2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Air-filled Substrate-Integrated Waveguide Technology for Broadband and Highly-Efficient Photonic-Enabled Antenna Systems\",\"authors\":\"S. Lemey, O. Caytan, Quinten Van den Brande, Igor Lima de Paula, L. Bogaert, Haolin Li, J. V. Kerrebrouck, A. Reniers, B. Smolders, J. Bauwelinck, P. Demeester, G. Torfs, D. Ginste, S. Verstuyft, B. Kuyken, H. Rogier\",\"doi\":\"10.23919/URSIGASS49373.2020.9232291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The combination of microwave photonics, radio-over-fiber (RoF) and air-filled substrate-integrated-waveguide (AFSIW) technology opens many promising pathways to realize robust, broadband, and highly-integrated multi-antenna systems that address the stringent demands of (beyond-)5G wireless applications. In this paper, we demonstrate the potential of such a multi-disciplinary approach by discussing three designs. First, two AFSIW-based photonic-enabled remote antenna units (RAUs) are presented for downlink sub-6GHz RoF. By adopting an extensive full-wave/circuit co-simulation model, the power transfer between the optical and electrical domain is maximized. In the first design, this is done by using a Chebyshev impedance matching network, while the second design exploits conjugate matching. Second, a hybrid integration strategy for compact, broadband and highly efficient mmWave antennas is introduced. Its excellent performance is proven by realizing an on-chip AFSIW stacked patch antenna. In addition, the design facilitates compact integration of the opto-electronic front-end, making it attractive for the realization of next-generation photonic-enabled mmWave planar multi-antenna systems.\",\"PeriodicalId\":438881,\"journal\":{\"name\":\"2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/URSIGASS49373.2020.9232291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/URSIGASS49373.2020.9232291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

微波光子学、光纤无线电(RoF)和充气基板集成波导(AFSIW)技术的结合,为实现鲁棒、宽带和高度集成的多天线系统开辟了许多有前途的途径,以满足(超)5G无线应用的严格要求。在本文中,我们通过讨论三种设计来展示这种多学科方法的潜力。首先,针对低于6ghz的RoF下行链路,提出了两种基于afsiw的光子远程天线单元(rau),通过采用广泛的全波/电路联合仿真模型,最大限度地实现了光域和电域之间的功率传输。在第一种设计中,这是通过使用切比雪夫阻抗匹配网络完成的,而第二种设计利用共轭匹配。其次,介绍了紧凑、宽带和高效毫米波天线的混合集成策略。通过实现片上AFSIW堆叠贴片天线,验证了其优良的性能。此外,该设计有助于光电前端的紧凑集成,使其对实现下一代光子毫米波平面多天线系统具有吸引力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Air-filled Substrate-Integrated Waveguide Technology for Broadband and Highly-Efficient Photonic-Enabled Antenna Systems
The combination of microwave photonics, radio-over-fiber (RoF) and air-filled substrate-integrated-waveguide (AFSIW) technology opens many promising pathways to realize robust, broadband, and highly-integrated multi-antenna systems that address the stringent demands of (beyond-)5G wireless applications. In this paper, we demonstrate the potential of such a multi-disciplinary approach by discussing three designs. First, two AFSIW-based photonic-enabled remote antenna units (RAUs) are presented for downlink sub-6GHz RoF. By adopting an extensive full-wave/circuit co-simulation model, the power transfer between the optical and electrical domain is maximized. In the first design, this is done by using a Chebyshev impedance matching network, while the second design exploits conjugate matching. Second, a hybrid integration strategy for compact, broadband and highly efficient mmWave antennas is introduced. Its excellent performance is proven by realizing an on-chip AFSIW stacked patch antenna. In addition, the design facilitates compact integration of the opto-electronic front-end, making it attractive for the realization of next-generation photonic-enabled mmWave planar multi-antenna systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信