如何在投资组合优化中消除波动的长记忆:利用copula的经验证据

Héla Mzoughi
{"title":"如何在投资组合优化中消除波动的长记忆:利用copula的经验证据","authors":"Héla Mzoughi","doi":"10.2139/ssrn.3720661","DOIUrl":null,"url":null,"abstract":"This paper focuses on the analysis of long-memory properties of copula-based time series. We empirically investigate the relation between copulas parameter modeling temporal dependence and dependence structure, using simulated and financial series. Our results prove the existence of a positive relation relying two Markov process th X + and th Y + to their dependence structure.","PeriodicalId":139826,"journal":{"name":"SWIFT Institute Research Paper Series","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How Can Long Memory in Volatility Be Eliminated in Portfolio Optimization: An Empirical Evidence Using Copulas\",\"authors\":\"Héla Mzoughi\",\"doi\":\"10.2139/ssrn.3720661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on the analysis of long-memory properties of copula-based time series. We empirically investigate the relation between copulas parameter modeling temporal dependence and dependence structure, using simulated and financial series. Our results prove the existence of a positive relation relying two Markov process th X + and th Y + to their dependence structure.\",\"PeriodicalId\":139826,\"journal\":{\"name\":\"SWIFT Institute Research Paper Series\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SWIFT Institute Research Paper Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3720661\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SWIFT Institute Research Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3720661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究基于copula的时间序列的长记忆特性。本文利用模拟序列和金融序列对copula参数建模时间依赖性和依赖结构之间的关系进行了实证研究。我们的结果证明了依赖于两个马尔可夫过程X +和Y +的正相关结构的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How Can Long Memory in Volatility Be Eliminated in Portfolio Optimization: An Empirical Evidence Using Copulas
This paper focuses on the analysis of long-memory properties of copula-based time series. We empirically investigate the relation between copulas parameter modeling temporal dependence and dependence structure, using simulated and financial series. Our results prove the existence of a positive relation relying two Markov process th X + and th Y + to their dependence structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信