正交基功率放大器模型简化

A. Soltani Tehrani, H. Cao, T. Eriksson, C. Fager
{"title":"正交基功率放大器模型简化","authors":"A. Soltani Tehrani, H. Cao, T. Eriksson, C. Fager","doi":"10.1109/INMMIC.2008.4745709","DOIUrl":null,"url":null,"abstract":"A new power amplifier behavioral model is proposed in this paper. The memory polynomial model is combined with a Kautz-Volterra like filter to construct this novel parallel three-box model. With this technique, the number of parameters required to obtain a certain accuracy can be reduced, and a higher nonlinear order and longer memory depth can be modeled compared to the Kautz-Volterra model. Results from modeling a power amplifier are presented and compared to other models.","PeriodicalId":205987,"journal":{"name":"2008 Workshop on Integrated Nonlinear Microwave and Millimetre-Wave Circuits","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Orthonormal-basis power amplifier model reduction\",\"authors\":\"A. Soltani Tehrani, H. Cao, T. Eriksson, C. Fager\",\"doi\":\"10.1109/INMMIC.2008.4745709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new power amplifier behavioral model is proposed in this paper. The memory polynomial model is combined with a Kautz-Volterra like filter to construct this novel parallel three-box model. With this technique, the number of parameters required to obtain a certain accuracy can be reduced, and a higher nonlinear order and longer memory depth can be modeled compared to the Kautz-Volterra model. Results from modeling a power amplifier are presented and compared to other models.\",\"PeriodicalId\":205987,\"journal\":{\"name\":\"2008 Workshop on Integrated Nonlinear Microwave and Millimetre-Wave Circuits\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Workshop on Integrated Nonlinear Microwave and Millimetre-Wave Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INMMIC.2008.4745709\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Workshop on Integrated Nonlinear Microwave and Millimetre-Wave Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INMMIC.2008.4745709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种新的功率放大器行为模型。将记忆多项式模型与类Kautz-Volterra滤波器相结合,构建了这种新型的并行三盒模型。与Kautz-Volterra模型相比,使用这种技术可以减少获得一定精度所需的参数数量,并且可以建模更高的非线性阶数和更长的记忆深度。给出了功率放大器的建模结果,并与其他模型进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Orthonormal-basis power amplifier model reduction
A new power amplifier behavioral model is proposed in this paper. The memory polynomial model is combined with a Kautz-Volterra like filter to construct this novel parallel three-box model. With this technique, the number of parameters required to obtain a certain accuracy can be reduced, and a higher nonlinear order and longer memory depth can be modeled compared to the Kautz-Volterra model. Results from modeling a power amplifier are presented and compared to other models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信