约束潜变量模型

Aydin Varol, M. Salzmann, P. Fua, R. Urtasun
{"title":"约束潜变量模型","authors":"Aydin Varol, M. Salzmann, P. Fua, R. Urtasun","doi":"10.1109/CVPR.2012.6247934","DOIUrl":null,"url":null,"abstract":"Latent variable models provide valuable compact representations for learning and inference in many computer vision tasks. However, most existing models cannot directly encode prior knowledge about the specific problem at hand. In this paper, we introduce a constrained latent variable model whose generated output inherently accounts for such knowledge. To this end, we propose an approach that explicitly imposes equality and inequality constraints on the model's output during learning, thus avoiding the computational burden of having to account for these constraints at inference. Our learning mechanism can exploit non-linear kernels, while only involving sequential closed-form updates of the model parameters. We demonstrate the effectiveness of our constrained latent variable model on the problem of non-rigid 3D reconstruction from monocular images, and show that it yields qualitative and quantitative improvements over several baselines.","PeriodicalId":177454,"journal":{"name":"2012 IEEE Conference on Computer Vision and Pattern Recognition","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"80","resultStr":"{\"title\":\"A constrained latent variable model\",\"authors\":\"Aydin Varol, M. Salzmann, P. Fua, R. Urtasun\",\"doi\":\"10.1109/CVPR.2012.6247934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Latent variable models provide valuable compact representations for learning and inference in many computer vision tasks. However, most existing models cannot directly encode prior knowledge about the specific problem at hand. In this paper, we introduce a constrained latent variable model whose generated output inherently accounts for such knowledge. To this end, we propose an approach that explicitly imposes equality and inequality constraints on the model's output during learning, thus avoiding the computational burden of having to account for these constraints at inference. Our learning mechanism can exploit non-linear kernels, while only involving sequential closed-form updates of the model parameters. We demonstrate the effectiveness of our constrained latent variable model on the problem of non-rigid 3D reconstruction from monocular images, and show that it yields qualitative and quantitative improvements over several baselines.\",\"PeriodicalId\":177454,\"journal\":{\"name\":\"2012 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"80\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2012.6247934\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2012.6247934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 80

摘要

潜在变量模型为许多计算机视觉任务的学习和推理提供了有价值的紧凑表示。然而,大多数现有的模型不能直接编码关于手头特定问题的先验知识。在本文中,我们引入了一个约束潜变量模型,其生成的输出固有地解释了这些知识。为此,我们提出了一种方法,在学习过程中明确地对模型的输出施加相等和不相等约束,从而避免了在推理时必须考虑这些约束的计算负担。我们的学习机制可以利用非线性核,而只涉及模型参数的顺序封闭形式更新。我们证明了约束潜变量模型在单眼图像非刚性三维重建问题上的有效性,并表明它在几个基线上产生了定性和定量的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A constrained latent variable model
Latent variable models provide valuable compact representations for learning and inference in many computer vision tasks. However, most existing models cannot directly encode prior knowledge about the specific problem at hand. In this paper, we introduce a constrained latent variable model whose generated output inherently accounts for such knowledge. To this end, we propose an approach that explicitly imposes equality and inequality constraints on the model's output during learning, thus avoiding the computational burden of having to account for these constraints at inference. Our learning mechanism can exploit non-linear kernels, while only involving sequential closed-form updates of the model parameters. We demonstrate the effectiveness of our constrained latent variable model on the problem of non-rigid 3D reconstruction from monocular images, and show that it yields qualitative and quantitative improvements over several baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信