基于概率成分的网络分析:特邀论文

L. Santinelli
{"title":"基于概率成分的网络分析:特邀论文","authors":"L. Santinelli","doi":"10.1145/2983185.2983197","DOIUrl":null,"url":null,"abstract":"Time-constrained networks have demanded so far for deterministic modeling and analysis in order to guarantee their worst-case behavior. With this work we intend to apply both probabilistic modeling and probabilistic analyses to investigate such networks. The probabilistic framework we propose aims at guaranteeing confidence levels, in the form of probabilities, to the network timing constraints; the deterministic case remain a particular case, the worst-case, within the probabilistic framework. We focus on probabilistic bounds for defining probabilistic interfaces to network components and we study the way that probabilities propagate within networks by accounting for the dependences and the interactions between network components. Finally, we define and apply probabilistic performance metrics for evaluating network behavior with different degree of confidence due to the probabilities.","PeriodicalId":447904,"journal":{"name":"SIGBED Rev.","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probabilistic component-based analysis for networks: invited paper\",\"authors\":\"L. Santinelli\",\"doi\":\"10.1145/2983185.2983197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time-constrained networks have demanded so far for deterministic modeling and analysis in order to guarantee their worst-case behavior. With this work we intend to apply both probabilistic modeling and probabilistic analyses to investigate such networks. The probabilistic framework we propose aims at guaranteeing confidence levels, in the form of probabilities, to the network timing constraints; the deterministic case remain a particular case, the worst-case, within the probabilistic framework. We focus on probabilistic bounds for defining probabilistic interfaces to network components and we study the way that probabilities propagate within networks by accounting for the dependences and the interactions between network components. Finally, we define and apply probabilistic performance metrics for evaluating network behavior with different degree of confidence due to the probabilities.\",\"PeriodicalId\":447904,\"journal\":{\"name\":\"SIGBED Rev.\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGBED Rev.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2983185.2983197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGBED Rev.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2983185.2983197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

到目前为止,时间约束网络需要确定性建模和分析,以保证其最坏情况的行为。通过这项工作,我们打算应用概率建模和概率分析来研究这种网络。我们提出的概率框架旨在以概率的形式保证网络时序约束的置信水平;确定性情况仍然是概率框架内的一种特殊情况,即最坏情况。我们将重点放在定义网络组件的概率接口的概率边界上,并通过考虑网络组件之间的依赖关系和相互作用,研究概率在网络内传播的方式。最后,我们定义并应用概率性能指标来评估由于概率而具有不同置信度的网络行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probabilistic component-based analysis for networks: invited paper
Time-constrained networks have demanded so far for deterministic modeling and analysis in order to guarantee their worst-case behavior. With this work we intend to apply both probabilistic modeling and probabilistic analyses to investigate such networks. The probabilistic framework we propose aims at guaranteeing confidence levels, in the form of probabilities, to the network timing constraints; the deterministic case remain a particular case, the worst-case, within the probabilistic framework. We focus on probabilistic bounds for defining probabilistic interfaces to network components and we study the way that probabilities propagate within networks by accounting for the dependences and the interactions between network components. Finally, we define and apply probabilistic performance metrics for evaluating network behavior with different degree of confidence due to the probabilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信