次正定四元数方程的外推PSS迭代法

Zhang Shanshan, Huang Jingpin, Xiong Hao, Wang Yun
{"title":"次正定四元数方程的外推PSS迭代法","authors":"Zhang Shanshan, Huang Jingpin, Xiong Hao, Wang Yun","doi":"10.1109/CCDC52312.2021.9602327","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a new splitting, called positive-definite and skew-self-conjugate splitting (PSS), and then establish a class of PSS methods similar to the Hermitian and skew-Hermitian splitting (HSS) method for iteratively solving the sub-positive definite matrix equation, and equivalently transform it iterative format on the basis of the PSS iteration method, heuristically establishes the extrapolated PSS iteration method. Theoretical analyses show that the PSS iteration method unconditionally converges to the exact solution of the equation. Using equivalent relationship between both PSS and extrapolated PSS iterations, the extrapolated PSS iteration method converges under certain conditions. Moreover, we minimize the upper bound of the spectral radius of iteration matrix. Finally, Numerical examples illustrating the effectiveness of both PSS and extrapolated PSS iterations are presented.","PeriodicalId":143976,"journal":{"name":"2021 33rd Chinese Control and Decision Conference (CCDC)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extrapolated PSS Iterative Method for Sub-positive Definite Quaternion Equations\",\"authors\":\"Zhang Shanshan, Huang Jingpin, Xiong Hao, Wang Yun\",\"doi\":\"10.1109/CCDC52312.2021.9602327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a new splitting, called positive-definite and skew-self-conjugate splitting (PSS), and then establish a class of PSS methods similar to the Hermitian and skew-Hermitian splitting (HSS) method for iteratively solving the sub-positive definite matrix equation, and equivalently transform it iterative format on the basis of the PSS iteration method, heuristically establishes the extrapolated PSS iteration method. Theoretical analyses show that the PSS iteration method unconditionally converges to the exact solution of the equation. Using equivalent relationship between both PSS and extrapolated PSS iterations, the extrapolated PSS iteration method converges under certain conditions. Moreover, we minimize the upper bound of the spectral radius of iteration matrix. Finally, Numerical examples illustrating the effectiveness of both PSS and extrapolated PSS iterations are presented.\",\"PeriodicalId\":143976,\"journal\":{\"name\":\"2021 33rd Chinese Control and Decision Conference (CCDC)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 33rd Chinese Control and Decision Conference (CCDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCDC52312.2021.9602327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 33rd Chinese Control and Decision Conference (CCDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC52312.2021.9602327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文引入了一种新的分裂方法——正定偏斜自共轭分裂(PSS),建立了一类与厄米特和偏斜厄米特分裂(HSS)方法类似的迭代求解次正定矩阵方程的PSS方法,并在PSS迭代方法的基础上将其等效转化为迭代格式,启发式地建立了外推式PSS迭代方法。理论分析表明,PSS迭代法无条件收敛于方程的精确解。利用PSS迭代与外推PSS迭代之间的等价关系,外推PSS迭代方法在一定条件下收敛。此外,我们还最小化了迭代矩阵谱半径的上界。最后,通过数值算例说明了PSS迭代和外推PSS迭代的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extrapolated PSS Iterative Method for Sub-positive Definite Quaternion Equations
In this paper, we introduce a new splitting, called positive-definite and skew-self-conjugate splitting (PSS), and then establish a class of PSS methods similar to the Hermitian and skew-Hermitian splitting (HSS) method for iteratively solving the sub-positive definite matrix equation, and equivalently transform it iterative format on the basis of the PSS iteration method, heuristically establishes the extrapolated PSS iteration method. Theoretical analyses show that the PSS iteration method unconditionally converges to the exact solution of the equation. Using equivalent relationship between both PSS and extrapolated PSS iterations, the extrapolated PSS iteration method converges under certain conditions. Moreover, we minimize the upper bound of the spectral radius of iteration matrix. Finally, Numerical examples illustrating the effectiveness of both PSS and extrapolated PSS iterations are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信