求解周期三对角线性方程组的平行向量算法

T. Taha
{"title":"求解周期三对角线性方程组的平行向量算法","authors":"T. Taha","doi":"10.1109/DMCC.1991.633307","DOIUrl":null,"url":null,"abstract":"Periodic tridiagonal linear systems of equations typi- cally arise from discretizing second order differential equations with periodic boundary conditions. In this paper a parallel-vector algorithm is introduced to solve such systems. Implementation of the new algorithm is carried out on an Intel iPSC/2 hypercube with vector processor boards attached to each node processor. It is to be noted that t his algorithm can be extended to solve other periodic banded linear systems.","PeriodicalId":313314,"journal":{"name":"The Sixth Distributed Memory Computing Conference, 1991. Proceedings","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Parallel-Vector Algorithm for Solving Periodic Tridiagonal Linear Systems of Equations\",\"authors\":\"T. Taha\",\"doi\":\"10.1109/DMCC.1991.633307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Periodic tridiagonal linear systems of equations typi- cally arise from discretizing second order differential equations with periodic boundary conditions. In this paper a parallel-vector algorithm is introduced to solve such systems. Implementation of the new algorithm is carried out on an Intel iPSC/2 hypercube with vector processor boards attached to each node processor. It is to be noted that t his algorithm can be extended to solve other periodic banded linear systems.\",\"PeriodicalId\":313314,\"journal\":{\"name\":\"The Sixth Distributed Memory Computing Conference, 1991. Proceedings\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Sixth Distributed Memory Computing Conference, 1991. Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DMCC.1991.633307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Sixth Distributed Memory Computing Conference, 1991. Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DMCC.1991.633307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

周期三对角线性方程组通常是由具有周期边界条件的二阶微分方程离散产生的。本文引入了一种并行向量算法来求解这类系统。新算法的实现是在Intel iPSC/2超立方体上进行的,每个节点处理器都附有矢量处理器板。值得注意的是,该算法可以推广到求解其他周期带状线性系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Parallel-Vector Algorithm for Solving Periodic Tridiagonal Linear Systems of Equations
Periodic tridiagonal linear systems of equations typi- cally arise from discretizing second order differential equations with periodic boundary conditions. In this paper a parallel-vector algorithm is introduced to solve such systems. Implementation of the new algorithm is carried out on an Intel iPSC/2 hypercube with vector processor boards attached to each node processor. It is to be noted that t his algorithm can be extended to solve other periodic banded linear systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信