无气味卡尔曼观察者*

Assia Daid, E. Busvelle, M. Aidène
{"title":"无气味卡尔曼观察者*","authors":"Assia Daid, E. Busvelle, M. Aidène","doi":"10.1109/ICSC47195.2019.8950505","DOIUrl":null,"url":null,"abstract":"The extended Kalman filter is an exponentially converging observer as soon as it is written in a canonical form of observability and in its high-gain form. It is shown that unlike extended Kalman filter, unscented Kalman filter can not be an exponentially converging observer. We propose a slight modification of the unscented Kalman filter to build an exponentially converging observer called unscented Kalman observer. Performances of this new observer are illustrated on an example of geolocation problem.","PeriodicalId":162197,"journal":{"name":"2019 8th International Conference on Systems and Control (ICSC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Unscented Kalman Observer*\",\"authors\":\"Assia Daid, E. Busvelle, M. Aidène\",\"doi\":\"10.1109/ICSC47195.2019.8950505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The extended Kalman filter is an exponentially converging observer as soon as it is written in a canonical form of observability and in its high-gain form. It is shown that unlike extended Kalman filter, unscented Kalman filter can not be an exponentially converging observer. We propose a slight modification of the unscented Kalman filter to build an exponentially converging observer called unscented Kalman observer. Performances of this new observer are illustrated on an example of geolocation problem.\",\"PeriodicalId\":162197,\"journal\":{\"name\":\"2019 8th International Conference on Systems and Control (ICSC)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 8th International Conference on Systems and Control (ICSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSC47195.2019.8950505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 8th International Conference on Systems and Control (ICSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSC47195.2019.8950505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

只要将扩展卡尔曼滤波器写成可观测性的规范形式和高增益形式,它就是一个指数收敛的观测器。结果表明,与扩展卡尔曼滤波器不同,unscented卡尔曼滤波器不能是指数收敛的观测器。我们提出了对无气味卡尔曼滤波器的轻微修改,以建立一个指数收敛的观测器,称为无气味卡尔曼观测器。以地理定位问题为例说明了该观测器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unscented Kalman Observer*
The extended Kalman filter is an exponentially converging observer as soon as it is written in a canonical form of observability and in its high-gain form. It is shown that unlike extended Kalman filter, unscented Kalman filter can not be an exponentially converging observer. We propose a slight modification of the unscented Kalman filter to build an exponentially converging observer called unscented Kalman observer. Performances of this new observer are illustrated on an example of geolocation problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信