干介质和液体介质中微操作力的分析

M. Gauthier, S. Régnier, P. Rougeot, N. Chaillet
{"title":"干介质和液体介质中微操作力的分析","authors":"M. Gauthier, S. Régnier, P. Rougeot, N. Chaillet","doi":"10.1163/156856306777924699","DOIUrl":null,"url":null,"abstract":"During microscale object manipulation, contact (pull-off) forces and non-contact (capillary, van der Waals and electrostatic) forces determine the behaviour of the micro-objects rather than the inertial forces. The aim of this article is to give an experimental analysis of the physical phenomena at a microscopic scale in dry and liquid media. This article introduces a review of the major differences between dry and submerged micromanipulations. The theoretical influences of the medium on van der Waals forces, electrostatic forces, pull-off forces and hydrodynamic forces are presented. Experimental force measurements based on an AFM system are carried out. These experiments exhibit a correlation better than 40% between the theoretical forces and the measured forces (except for pull-off in water). Finally, some comparative experimental micromanipulation results are described and show the advantages of the liquid medium.","PeriodicalId":150257,"journal":{"name":"Journal of Micromechatronics","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"92","resultStr":"{\"title\":\"Analysis of forces for micromanipulations in dry and liquid media\",\"authors\":\"M. Gauthier, S. Régnier, P. Rougeot, N. Chaillet\",\"doi\":\"10.1163/156856306777924699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During microscale object manipulation, contact (pull-off) forces and non-contact (capillary, van der Waals and electrostatic) forces determine the behaviour of the micro-objects rather than the inertial forces. The aim of this article is to give an experimental analysis of the physical phenomena at a microscopic scale in dry and liquid media. This article introduces a review of the major differences between dry and submerged micromanipulations. The theoretical influences of the medium on van der Waals forces, electrostatic forces, pull-off forces and hydrodynamic forces are presented. Experimental force measurements based on an AFM system are carried out. These experiments exhibit a correlation better than 40% between the theoretical forces and the measured forces (except for pull-off in water). Finally, some comparative experimental micromanipulation results are described and show the advantages of the liquid medium.\",\"PeriodicalId\":150257,\"journal\":{\"name\":\"Journal of Micromechatronics\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"92\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micromechatronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1163/156856306777924699\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1163/156856306777924699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 92

摘要

在微尺度物体操作过程中,接触(拉离)力和非接触(毛细管力、范德华力和静电力)力决定了微物体的行为,而不是惯性力。本文的目的是对干燥介质和液体介质中微观尺度的物理现象进行实验分析。本文介绍了干式和浸没式微操作的主要区别。给出了介质对范德华力、静电力、拉脱力和水动力的理论影响。基于AFM系统进行了实验力测量。这些实验表明,理论力与测量力之间的相关性优于40%(除水中的拉脱)。最后,介绍了一些对比实验结果,并说明了液体介质的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of forces for micromanipulations in dry and liquid media
During microscale object manipulation, contact (pull-off) forces and non-contact (capillary, van der Waals and electrostatic) forces determine the behaviour of the micro-objects rather than the inertial forces. The aim of this article is to give an experimental analysis of the physical phenomena at a microscopic scale in dry and liquid media. This article introduces a review of the major differences between dry and submerged micromanipulations. The theoretical influences of the medium on van der Waals forces, electrostatic forces, pull-off forces and hydrodynamic forces are presented. Experimental force measurements based on an AFM system are carried out. These experiments exhibit a correlation better than 40% between the theoretical forces and the measured forces (except for pull-off in water). Finally, some comparative experimental micromanipulation results are described and show the advantages of the liquid medium.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信