统计独立性与权变矩阵

S. Tsumoto, S. Hirano
{"title":"统计独立性与权变矩阵","authors":"S. Tsumoto, S. Hirano","doi":"10.1109/ICDMW.2008.94","DOIUrl":null,"url":null,"abstract":"This paper shows the meaning of Pearson residuals as an indicator of statistical independence. While information granules of statistical independence of two variables can be viewed as determinants of 2times2-submatrices, those of three variables consist of several combinations of linear equations which will become residuals for odds ratio (outer products) when they are equal to 0. Interestingly, the residuals can be an expansion series of the product of marginal distributions and the residuals for odds ratio (outer products).","PeriodicalId":175955,"journal":{"name":"2008 IEEE International Conference on Data Mining Workshops","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Statistical Independence and Contingency Matrix\",\"authors\":\"S. Tsumoto, S. Hirano\",\"doi\":\"10.1109/ICDMW.2008.94\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper shows the meaning of Pearson residuals as an indicator of statistical independence. While information granules of statistical independence of two variables can be viewed as determinants of 2times2-submatrices, those of three variables consist of several combinations of linear equations which will become residuals for odds ratio (outer products) when they are equal to 0. Interestingly, the residuals can be an expansion series of the product of marginal distributions and the residuals for odds ratio (outer products).\",\"PeriodicalId\":175955,\"journal\":{\"name\":\"2008 IEEE International Conference on Data Mining Workshops\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Conference on Data Mining Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2008.94\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2008.94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文说明了皮尔逊残差作为统计独立性指标的意义。两个变量的统计独立性信息粒可以看作是2times2子矩阵的行列式,而三个变量的统计独立性信息粒由若干线性方程的组合组成,当它们等于0时,这些组合将成为比值比(外积)的残差。有趣的是,残差可以是边际分布与比值比残差(外积)乘积的展开式级数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical Independence and Contingency Matrix
This paper shows the meaning of Pearson residuals as an indicator of statistical independence. While information granules of statistical independence of two variables can be viewed as determinants of 2times2-submatrices, those of three variables consist of several combinations of linear equations which will become residuals for odds ratio (outer products) when they are equal to 0. Interestingly, the residuals can be an expansion series of the product of marginal distributions and the residuals for odds ratio (outer products).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信