基于N-Gram词组合的泰语twitter趋势关键词提取

Tanatorn Tanantong, Sasitorn Kreangkriwanich, Nasith Laosen
{"title":"基于N-Gram词组合的泰语twitter趋势关键词提取","authors":"Tanatorn Tanantong, Sasitorn Kreangkriwanich, Nasith Laosen","doi":"10.1109/ecti-con49241.2020.9158061","DOIUrl":null,"url":null,"abstract":"Extracting keywords from text on social media facilitates people to update news and trends. It reduces time spent for identifying main content from huge amount of data, and it can be used to identify situations or events that most of people mention in each period of time. This paper proposes a method for extracting keywords from Thai text on social media. A N-gram-based word-combination technique is presented to segment words that are not in dictionaries and increase the precision of word segmentation. Posts on Twitter concerning universities in Thailand are used as a case study for extracting keywords and analyzing trends. The experimental results show that the proposed method yield the highest precision of 70%.","PeriodicalId":371552,"journal":{"name":"2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Extraction of Trend Keywords from Thai Twitters using N-Gram Word Combination\",\"authors\":\"Tanatorn Tanantong, Sasitorn Kreangkriwanich, Nasith Laosen\",\"doi\":\"10.1109/ecti-con49241.2020.9158061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extracting keywords from text on social media facilitates people to update news and trends. It reduces time spent for identifying main content from huge amount of data, and it can be used to identify situations or events that most of people mention in each period of time. This paper proposes a method for extracting keywords from Thai text on social media. A N-gram-based word-combination technique is presented to segment words that are not in dictionaries and increase the precision of word segmentation. Posts on Twitter concerning universities in Thailand are used as a case study for extracting keywords and analyzing trends. The experimental results show that the proposed method yield the highest precision of 70%.\",\"PeriodicalId\":371552,\"journal\":{\"name\":\"2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ecti-con49241.2020.9158061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ecti-con49241.2020.9158061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

从社交媒体上的文本中提取关键字有助于人们更新新闻和趋势。它减少了从大量数据中识别主要内容所花费的时间,并且可以用来识别每个时间段大多数人提到的情况或事件。本文提出了一种从社交媒体上的泰语文本中提取关键词的方法。提出了一种基于n -gram的词组合技术,对字典中没有的词进行分词,提高了分词的精度。Twitter上有关泰国大学的帖子被用作提取关键词和分析趋势的案例研究。实验结果表明,该方法的检测精度最高可达70%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extraction of Trend Keywords from Thai Twitters using N-Gram Word Combination
Extracting keywords from text on social media facilitates people to update news and trends. It reduces time spent for identifying main content from huge amount of data, and it can be used to identify situations or events that most of people mention in each period of time. This paper proposes a method for extracting keywords from Thai text on social media. A N-gram-based word-combination technique is presented to segment words that are not in dictionaries and increase the precision of word segmentation. Posts on Twitter concerning universities in Thailand are used as a case study for extracting keywords and analyzing trends. The experimental results show that the proposed method yield the highest precision of 70%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信