{"title":"第一次和第二次价格拍卖中时间约束印象合同的实时竞价-理论和算法","authors":"R. Kinnear, R. Mazumdar, P. Marbach","doi":"10.1145/3491049","DOIUrl":null,"url":null,"abstract":"We study the optimal bids and allocations in a real-time auction for heterogeneous items subject to the requirement that specified collections of items of given types be acquired within given time constraints. The problem is cast as a continuous time optimization problem that can, under certain weak assumptions, be reduced to a convex optimization problem. Focusing on the standard first and second price auctions, we first show, using convex duality, that the optimal (infinite dimensional) bidding policy can be represented by a single finite vector of so-called ''pseudo-bids''. Using this result we are able to show that the optimal solution in the second price case turns out to be a very simple piecewise constant function of time. This contrasts with the first price case that is more complicated. Despite the fact that the optimal solution for the first price auction is genuinely dynamic, we show that there remains a close connection between the two cases and that, empirically, there is almost no difference between optimal behavior in either setting. This suggests that it is adequate to bid in a first price auction as if it were in fact second price. Finally, we detail methods for implementing our bidding policies in practice with further numerical simulations illustrating the performance.","PeriodicalId":426760,"journal":{"name":"Proceedings of the ACM on Measurement and Analysis of Computing Systems","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Real-time Bidding for Time Constrained Impression Contracts in First and Second Price Auctions - Theory and Algorithms\",\"authors\":\"R. Kinnear, R. Mazumdar, P. Marbach\",\"doi\":\"10.1145/3491049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the optimal bids and allocations in a real-time auction for heterogeneous items subject to the requirement that specified collections of items of given types be acquired within given time constraints. The problem is cast as a continuous time optimization problem that can, under certain weak assumptions, be reduced to a convex optimization problem. Focusing on the standard first and second price auctions, we first show, using convex duality, that the optimal (infinite dimensional) bidding policy can be represented by a single finite vector of so-called ''pseudo-bids''. Using this result we are able to show that the optimal solution in the second price case turns out to be a very simple piecewise constant function of time. This contrasts with the first price case that is more complicated. Despite the fact that the optimal solution for the first price auction is genuinely dynamic, we show that there remains a close connection between the two cases and that, empirically, there is almost no difference between optimal behavior in either setting. This suggests that it is adequate to bid in a first price auction as if it were in fact second price. Finally, we detail methods for implementing our bidding policies in practice with further numerical simulations illustrating the performance.\",\"PeriodicalId\":426760,\"journal\":{\"name\":\"Proceedings of the ACM on Measurement and Analysis of Computing Systems\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM on Measurement and Analysis of Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3491049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Measurement and Analysis of Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3491049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Real-time Bidding for Time Constrained Impression Contracts in First and Second Price Auctions - Theory and Algorithms
We study the optimal bids and allocations in a real-time auction for heterogeneous items subject to the requirement that specified collections of items of given types be acquired within given time constraints. The problem is cast as a continuous time optimization problem that can, under certain weak assumptions, be reduced to a convex optimization problem. Focusing on the standard first and second price auctions, we first show, using convex duality, that the optimal (infinite dimensional) bidding policy can be represented by a single finite vector of so-called ''pseudo-bids''. Using this result we are able to show that the optimal solution in the second price case turns out to be a very simple piecewise constant function of time. This contrasts with the first price case that is more complicated. Despite the fact that the optimal solution for the first price auction is genuinely dynamic, we show that there remains a close connection between the two cases and that, empirically, there is almost no difference between optimal behavior in either setting. This suggests that it is adequate to bid in a first price auction as if it were in fact second price. Finally, we detail methods for implementing our bidding policies in practice with further numerical simulations illustrating the performance.