{"title":"基于语义微聚合的隐私保护信息检索","authors":"Daniel Abril, G. Navarro-Arribas, V. Torra","doi":"10.1109/WI-IAT.2010.132","DOIUrl":null,"url":null,"abstract":"In this paper we introduce the problem of providing privacy preserving information for Web indexing, classification, and other information retrieval task. Web pages are represented by a frequency term vector that preserves k-anonymity for all the Web pages. This vector can then be used, for example, to build indexes of classifiers. Our proposal makes use of semantic micro aggregation.","PeriodicalId":197966,"journal":{"name":"Web Intelligence/IAT Workshops","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Towards Privacy Preserving Information Retrieval through Semantic Microaggregation\",\"authors\":\"Daniel Abril, G. Navarro-Arribas, V. Torra\",\"doi\":\"10.1109/WI-IAT.2010.132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce the problem of providing privacy preserving information for Web indexing, classification, and other information retrieval task. Web pages are represented by a frequency term vector that preserves k-anonymity for all the Web pages. This vector can then be used, for example, to build indexes of classifiers. Our proposal makes use of semantic micro aggregation.\",\"PeriodicalId\":197966,\"journal\":{\"name\":\"Web Intelligence/IAT Workshops\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Web Intelligence/IAT Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI-IAT.2010.132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Web Intelligence/IAT Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2010.132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards Privacy Preserving Information Retrieval through Semantic Microaggregation
In this paper we introduce the problem of providing privacy preserving information for Web indexing, classification, and other information retrieval task. Web pages are represented by a frequency term vector that preserves k-anonymity for all the Web pages. This vector can then be used, for example, to build indexes of classifiers. Our proposal makes use of semantic micro aggregation.