小井水力压裂设计优化:以Bakken为例

A. Merzoug, Abdulaziz Ellafi
{"title":"小井水力压裂设计优化:以Bakken为例","authors":"A. Merzoug, Abdulaziz Ellafi","doi":"10.2118/213060-ms","DOIUrl":null,"url":null,"abstract":"\n The combination of hydraulic fracturing and horizontal drilling unlocked a huge energy potential in the US. The unconventional plays have been developed by drilling several horizontal wells and hydraulically fracturing them to enhance the fluid flow. The implementation of these well can be done at the same time, known as Tank Development; however, due to the high capital expenditure and the increased risks associated with such an approach, in addition to the limited number of available drilling rigs. Operators try to hold the lease first by drilling one well, producing it, then extending the lease with additional wells. The challenge is that by producing from these wells, the stress and pore pressure state changes around the first wells (i.e., parent well). These changes directly affect the hydraulic fracture propagation from the offset wells (i.e., child wells). In this work, we build a numerical that represents a real case study. The model was calibrated using data from (a) Microseismic Depletion Delineation, (b) Microseismic events, (c) 10 years of production. Synthetic offset wells were implemented to run a sensitivity analysis on the well design (well spacing, cluster spacing, injection volume) and to understand how to design better wells that have been influenced by production from a primary well. The simulations were run for 10 years. The results show that wider well spacing results in better production, whereas lower cluster spacing had better production. This study allows operators to design better offset wells drilled next to a depleted parent well in the Bakken.","PeriodicalId":360081,"journal":{"name":"Day 2 Tue, April 18, 2023","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimization of Child Well Hydraulic Fracturing Design: A Bakken Case Study\",\"authors\":\"A. Merzoug, Abdulaziz Ellafi\",\"doi\":\"10.2118/213060-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The combination of hydraulic fracturing and horizontal drilling unlocked a huge energy potential in the US. The unconventional plays have been developed by drilling several horizontal wells and hydraulically fracturing them to enhance the fluid flow. The implementation of these well can be done at the same time, known as Tank Development; however, due to the high capital expenditure and the increased risks associated with such an approach, in addition to the limited number of available drilling rigs. Operators try to hold the lease first by drilling one well, producing it, then extending the lease with additional wells. The challenge is that by producing from these wells, the stress and pore pressure state changes around the first wells (i.e., parent well). These changes directly affect the hydraulic fracture propagation from the offset wells (i.e., child wells). In this work, we build a numerical that represents a real case study. The model was calibrated using data from (a) Microseismic Depletion Delineation, (b) Microseismic events, (c) 10 years of production. Synthetic offset wells were implemented to run a sensitivity analysis on the well design (well spacing, cluster spacing, injection volume) and to understand how to design better wells that have been influenced by production from a primary well. The simulations were run for 10 years. The results show that wider well spacing results in better production, whereas lower cluster spacing had better production. This study allows operators to design better offset wells drilled next to a depleted parent well in the Bakken.\",\"PeriodicalId\":360081,\"journal\":{\"name\":\"Day 2 Tue, April 18, 2023\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Tue, April 18, 2023\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/213060-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, April 18, 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/213060-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

水力压裂和水平钻井相结合,释放了美国巨大的能源潜力。非常规油气藏的开发是通过钻几口水平井并进行水力压裂来提高流体流量的。这些井的实施可以同时进行,称为储层开发;然而,由于这种方法的高资本支出和风险增加,以及可用钻机数量有限。作业者试图先钻一口井,然后生产,然后再增加一口井来延长租期。挑战在于,从这些井进行生产时,第一口井(即母井)周围的应力和孔隙压力状态会发生变化。这些变化直接影响到邻井(即子井)的水力裂缝扩展。在这项工作中,我们建立了一个代表真实案例研究的数字。该模型使用以下数据进行校准:(a)微地震枯竭圈定,(b)微地震事件,(c) 10年的生产。为了对井设计(井距、井簇间距、注入量)进行敏感性分析,并了解如何设计受主井产量影响的更好的井。这些模拟运行了10年。结果表明,井距越宽产量越好,而簇距越小产量越好。这项研究使作业者能够设计更好的邻井,在Bakken的枯竭母井旁边钻井。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of Child Well Hydraulic Fracturing Design: A Bakken Case Study
The combination of hydraulic fracturing and horizontal drilling unlocked a huge energy potential in the US. The unconventional plays have been developed by drilling several horizontal wells and hydraulically fracturing them to enhance the fluid flow. The implementation of these well can be done at the same time, known as Tank Development; however, due to the high capital expenditure and the increased risks associated with such an approach, in addition to the limited number of available drilling rigs. Operators try to hold the lease first by drilling one well, producing it, then extending the lease with additional wells. The challenge is that by producing from these wells, the stress and pore pressure state changes around the first wells (i.e., parent well). These changes directly affect the hydraulic fracture propagation from the offset wells (i.e., child wells). In this work, we build a numerical that represents a real case study. The model was calibrated using data from (a) Microseismic Depletion Delineation, (b) Microseismic events, (c) 10 years of production. Synthetic offset wells were implemented to run a sensitivity analysis on the well design (well spacing, cluster spacing, injection volume) and to understand how to design better wells that have been influenced by production from a primary well. The simulations were run for 10 years. The results show that wider well spacing results in better production, whereas lower cluster spacing had better production. This study allows operators to design better offset wells drilled next to a depleted parent well in the Bakken.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信