一种改进的动态自适应粒子群优化算法

Yang Bo, Zhang Ding-xue, Liao Rui-quan
{"title":"一种改进的动态自适应粒子群优化算法","authors":"Yang Bo, Zhang Ding-xue, Liao Rui-quan","doi":"10.1109/IIH-MSP.2007.32","DOIUrl":null,"url":null,"abstract":"To overcome premature searching by standard particle swarm optimization (PSO) algorithm for the large lost in population diversity, the measure of population diversity and its calculation are given, and an adaptive PSO with dynamically changing inertia weight is proposed. Simulation results show that the adaptive PSO not only effectively alleviates the problem of premature convergence, but also has fast convergence speed for balancing the trade-off between exploration and exploitation.","PeriodicalId":385132,"journal":{"name":"Third International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP 2007)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Modified Particle Swarm Optimization Algorithm with Dynamic Adaptive\",\"authors\":\"Yang Bo, Zhang Ding-xue, Liao Rui-quan\",\"doi\":\"10.1109/IIH-MSP.2007.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To overcome premature searching by standard particle swarm optimization (PSO) algorithm for the large lost in population diversity, the measure of population diversity and its calculation are given, and an adaptive PSO with dynamically changing inertia weight is proposed. Simulation results show that the adaptive PSO not only effectively alleviates the problem of premature convergence, but also has fast convergence speed for balancing the trade-off between exploration and exploitation.\",\"PeriodicalId\":385132,\"journal\":{\"name\":\"Third International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP 2007)\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IIH-MSP.2007.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIH-MSP.2007.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

针对标准粒子群优化算法过早搜索导致种群多样性损失大的问题,给出了种群多样性的度量和计算方法,提出了一种动态变化惯性权值的自适应粒子群优化算法。仿真结果表明,该自适应粒子群算法不仅有效地缓解了早熟收敛问题,而且具有较快的收敛速度,能够很好地平衡探索和开发之间的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Modified Particle Swarm Optimization Algorithm with Dynamic Adaptive
To overcome premature searching by standard particle swarm optimization (PSO) algorithm for the large lost in population diversity, the measure of population diversity and its calculation are given, and an adaptive PSO with dynamically changing inertia weight is proposed. Simulation results show that the adaptive PSO not only effectively alleviates the problem of premature convergence, but also has fast convergence speed for balancing the trade-off between exploration and exploitation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信