SMURFF:一个高性能的矩阵分解框架

T. Aa, Imen Chakroun, Thomas J. Ashby
{"title":"SMURFF:一个高性能的矩阵分解框架","authors":"T. Aa, Imen Chakroun, Thomas J. Ashby","doi":"10.1109/AICAS.2019.8771607","DOIUrl":null,"url":null,"abstract":"Bayesian Matrix Factorization (BMF) is a powerful technique for recommender systems because it produces good results and is relatively robust against overfitting. Yet BMF is more computationally intensive and thus more challenging to implement for large datasets. In this work we present SMURFF a high-performance feature-rich framework to compose and construct different Bayesian matrix-factorization methods. The framework has been successfully used in to do large scale runs of compound-activity prediction. SMURFF is available as open-source and can be used both on a supercomputer and on a desktop or laptop machine. Documentation and several examples are provided as Jupyter notebooks using SMURFF’s high-level Python API.","PeriodicalId":273095,"journal":{"name":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"SMURFF: a High-Performance Framework for Matrix Factorization\",\"authors\":\"T. Aa, Imen Chakroun, Thomas J. Ashby\",\"doi\":\"10.1109/AICAS.2019.8771607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bayesian Matrix Factorization (BMF) is a powerful technique for recommender systems because it produces good results and is relatively robust against overfitting. Yet BMF is more computationally intensive and thus more challenging to implement for large datasets. In this work we present SMURFF a high-performance feature-rich framework to compose and construct different Bayesian matrix-factorization methods. The framework has been successfully used in to do large scale runs of compound-activity prediction. SMURFF is available as open-source and can be used both on a supercomputer and on a desktop or laptop machine. Documentation and several examples are provided as Jupyter notebooks using SMURFF’s high-level Python API.\",\"PeriodicalId\":273095,\"journal\":{\"name\":\"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAS.2019.8771607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS.2019.8771607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

对于推荐系统来说,贝叶斯矩阵分解(BMF)是一种强大的技术,因为它可以产生良好的结果,并且对过拟合具有相对的鲁棒性。然而,BMF的计算量更大,因此对大型数据集的实现更具挑战性。在这项工作中,我们提出了一个高性能的特征丰富的框架SMURFF来组合和构造不同的贝叶斯矩阵分解方法。该框架已成功用于化合物活性预测的大规模运行。SMURFF是开源的,既可以在超级计算机上使用,也可以在台式机或笔记本电脑上使用。文档和几个示例作为Jupyter笔记本提供,使用SMURFF的高级Python API。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SMURFF: a High-Performance Framework for Matrix Factorization
Bayesian Matrix Factorization (BMF) is a powerful technique for recommender systems because it produces good results and is relatively robust against overfitting. Yet BMF is more computationally intensive and thus more challenging to implement for large datasets. In this work we present SMURFF a high-performance feature-rich framework to compose and construct different Bayesian matrix-factorization methods. The framework has been successfully used in to do large scale runs of compound-activity prediction. SMURFF is available as open-source and can be used both on a supercomputer and on a desktop or laptop machine. Documentation and several examples are provided as Jupyter notebooks using SMURFF’s high-level Python API.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信