{"title":"MOEA/D具有基于delaunay三角测量的权重调整","authors":"Yutao Qi, Xiaoliang Ma, Minglei Yin, Fang Liu, Jingxuan Wei","doi":"10.1145/2598394.2598416","DOIUrl":null,"url":null,"abstract":"MOEA/D decomposes a multi-objective optimization problem (MOP) into a set of scalar sub-problems with evenly spread weight vectors. Recent studies have shown that the fixed weight vectors used in MOEA/D might not be able to cover the whole Pareto front (PF) very well. Due to this, we developed an adaptive weight adjustment method in our previous work by removing subproblems from the crowded parts of the PF and adding new ones into the sparse parts. Although it performs well, we found that the sparse measurement of a subproblem which is determined by the m-nearest (m is the dimensional of the object space) neighbors of its solution can be more appropriately defined. In this work, the neighborhood relationship between subproblems is defined by using Delaunay triangulation (DT) of the points in the population.","PeriodicalId":298232,"journal":{"name":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"MOEA/D with a delaunay triangulation based weight adjustment\",\"authors\":\"Yutao Qi, Xiaoliang Ma, Minglei Yin, Fang Liu, Jingxuan Wei\",\"doi\":\"10.1145/2598394.2598416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MOEA/D decomposes a multi-objective optimization problem (MOP) into a set of scalar sub-problems with evenly spread weight vectors. Recent studies have shown that the fixed weight vectors used in MOEA/D might not be able to cover the whole Pareto front (PF) very well. Due to this, we developed an adaptive weight adjustment method in our previous work by removing subproblems from the crowded parts of the PF and adding new ones into the sparse parts. Although it performs well, we found that the sparse measurement of a subproblem which is determined by the m-nearest (m is the dimensional of the object space) neighbors of its solution can be more appropriately defined. In this work, the neighborhood relationship between subproblems is defined by using Delaunay triangulation (DT) of the points in the population.\",\"PeriodicalId\":298232,\"journal\":{\"name\":\"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2598394.2598416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2598394.2598416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MOEA/D with a delaunay triangulation based weight adjustment
MOEA/D decomposes a multi-objective optimization problem (MOP) into a set of scalar sub-problems with evenly spread weight vectors. Recent studies have shown that the fixed weight vectors used in MOEA/D might not be able to cover the whole Pareto front (PF) very well. Due to this, we developed an adaptive weight adjustment method in our previous work by removing subproblems from the crowded parts of the PF and adding new ones into the sparse parts. Although it performs well, we found that the sparse measurement of a subproblem which is determined by the m-nearest (m is the dimensional of the object space) neighbors of its solution can be more appropriately defined. In this work, the neighborhood relationship between subproblems is defined by using Delaunay triangulation (DT) of the points in the population.