用模型不可知语言探索和解释预测家庭日常能源使用

P. Mohanty, Pushpak Das, D. S. Roy
{"title":"用模型不可知语言探索和解释预测家庭日常能源使用","authors":"P. Mohanty, Pushpak Das, D. S. Roy","doi":"10.1109/OCIT56763.2022.00106","DOIUrl":null,"url":null,"abstract":"Since urbanization is occurring at an exponential rate today, energy saving is a key factor for the majority of sustainable smart cities. Out of that, the majority of energy usage is directed toward homes, where there is an enormous possibility for energy optimization. As a result, most academics believe that forecasting this household energy using the advent of AI and machine learning techniques will have social benefits. However, predicting energy consumption alone won't help a city optimize its utilization of energy; it's also crucial to comprehend the factors that influence such predictions so that any available countermeasures can be applied and the city can make decisions about energy optimization that are more accountable, trustworthy, and justifiable to all of its stakeholders. There are different categories of explainers that offer the ability to explore a black box model. Each of these explanations has a connection to a certain model feature. Here, dalex, a Python library that implements a type of explanation, is utilized. a model-neutral user interfaces for interactive fairness and interpretability. It can make machine learning models more understandable. This method is used in this case to know the prediction model and discover the factors responsible for household energy consumption together including their relative importance.","PeriodicalId":425541,"journal":{"name":"2022 OITS International Conference on Information Technology (OCIT)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Predicting daily household energy usages by using Model Agnostic Language for Exploration and Explanation\",\"authors\":\"P. Mohanty, Pushpak Das, D. S. Roy\",\"doi\":\"10.1109/OCIT56763.2022.00106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since urbanization is occurring at an exponential rate today, energy saving is a key factor for the majority of sustainable smart cities. Out of that, the majority of energy usage is directed toward homes, where there is an enormous possibility for energy optimization. As a result, most academics believe that forecasting this household energy using the advent of AI and machine learning techniques will have social benefits. However, predicting energy consumption alone won't help a city optimize its utilization of energy; it's also crucial to comprehend the factors that influence such predictions so that any available countermeasures can be applied and the city can make decisions about energy optimization that are more accountable, trustworthy, and justifiable to all of its stakeholders. There are different categories of explainers that offer the ability to explore a black box model. Each of these explanations has a connection to a certain model feature. Here, dalex, a Python library that implements a type of explanation, is utilized. a model-neutral user interfaces for interactive fairness and interpretability. It can make machine learning models more understandable. This method is used in this case to know the prediction model and discover the factors responsible for household energy consumption together including their relative importance.\",\"PeriodicalId\":425541,\"journal\":{\"name\":\"2022 OITS International Conference on Information Technology (OCIT)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 OITS International Conference on Information Technology (OCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCIT56763.2022.00106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 OITS International Conference on Information Technology (OCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCIT56763.2022.00106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于当今城市化正以指数级速度发展,节能是大多数可持续智慧城市的关键因素。除此之外,大部分的能源使用都是针对家庭的,那里有巨大的能源优化的可能性。因此,大多数学者认为,利用人工智能和机器学习技术的出现来预测这种家庭能源将具有社会效益。然而,仅仅预测能源消耗并不能帮助城市优化能源利用;理解影响这些预测的因素也很重要,这样就可以应用任何可用的对策,城市就可以做出对所有利益相关者更负责任、更可信、更合理的能源优化决策。有不同类别的解释器提供探索黑盒模型的能力。每种解释都与某个模型特征有关。这里使用了一个Python库dalex,它实现了一种类型的解释。一个模型中立的用户界面,用于交互公平性和可解释性。它可以使机器学习模型更容易理解。在本案例中使用该方法来了解预测模型,并发现影响家庭能源消费的因素及其相对重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting daily household energy usages by using Model Agnostic Language for Exploration and Explanation
Since urbanization is occurring at an exponential rate today, energy saving is a key factor for the majority of sustainable smart cities. Out of that, the majority of energy usage is directed toward homes, where there is an enormous possibility for energy optimization. As a result, most academics believe that forecasting this household energy using the advent of AI and machine learning techniques will have social benefits. However, predicting energy consumption alone won't help a city optimize its utilization of energy; it's also crucial to comprehend the factors that influence such predictions so that any available countermeasures can be applied and the city can make decisions about energy optimization that are more accountable, trustworthy, and justifiable to all of its stakeholders. There are different categories of explainers that offer the ability to explore a black box model. Each of these explanations has a connection to a certain model feature. Here, dalex, a Python library that implements a type of explanation, is utilized. a model-neutral user interfaces for interactive fairness and interpretability. It can make machine learning models more understandable. This method is used in this case to know the prediction model and discover the factors responsible for household energy consumption together including their relative importance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信