基于改进水平集的MRI图像海马分割

Shuying Zhao, Dan Zhang, Xiangman Song, Wenjun Tan
{"title":"基于改进水平集的MRI图像海马分割","authors":"Shuying Zhao, Dan Zhang, Xiangman Song, Wenjun Tan","doi":"10.1109/ISCID.2011.39","DOIUrl":null,"url":null,"abstract":"For hippocampus of MRI demonstrating the low contrast, low signal to noise ratio(SNR), boundary discrete, intensity in homogeneities features, this paper proposed an improved level set model that based on regional and edge information. Refer to the intensity in homogeneities image, the global image information of external energy item is joined, to optimize the segmentation result, adopt edge information that is extracted by wavelet, which is used as an edge constraint stop item. Experimental results of many times segmentation of the hippocampus of MRI image show that this algorithm can precisely segment intensity in homogeneities image and improve the segmentation speed, so this algorithm can be applied to the complex structure segmentation, such as the hippocampus.","PeriodicalId":224504,"journal":{"name":"2011 Fourth International Symposium on Computational Intelligence and Design","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Segmentation of Hippocampus in MRI Images Based on the Improved Level Set\",\"authors\":\"Shuying Zhao, Dan Zhang, Xiangman Song, Wenjun Tan\",\"doi\":\"10.1109/ISCID.2011.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For hippocampus of MRI demonstrating the low contrast, low signal to noise ratio(SNR), boundary discrete, intensity in homogeneities features, this paper proposed an improved level set model that based on regional and edge information. Refer to the intensity in homogeneities image, the global image information of external energy item is joined, to optimize the segmentation result, adopt edge information that is extracted by wavelet, which is used as an edge constraint stop item. Experimental results of many times segmentation of the hippocampus of MRI image show that this algorithm can precisely segment intensity in homogeneities image and improve the segmentation speed, so this algorithm can be applied to the complex structure segmentation, such as the hippocampus.\",\"PeriodicalId\":224504,\"journal\":{\"name\":\"2011 Fourth International Symposium on Computational Intelligence and Design\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Fourth International Symposium on Computational Intelligence and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCID.2011.39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Symposium on Computational Intelligence and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCID.2011.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

针对MRI海马图像对比度低、信噪比低、边界离散、均匀性强等特点,提出了一种基于区域和边缘信息的改进水平集模型。参考均匀性图像中的强度,加入外部能量项的全局图像信息,为了优化分割结果,采用小波提取的边缘信息作为边缘约束停止项。对MRI图像海马的多次分割实验结果表明,该算法可以在均匀性图像中精确分割强度,提高分割速度,因此该算法可以应用于海马等复杂结构的分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Segmentation of Hippocampus in MRI Images Based on the Improved Level Set
For hippocampus of MRI demonstrating the low contrast, low signal to noise ratio(SNR), boundary discrete, intensity in homogeneities features, this paper proposed an improved level set model that based on regional and edge information. Refer to the intensity in homogeneities image, the global image information of external energy item is joined, to optimize the segmentation result, adopt edge information that is extracted by wavelet, which is used as an edge constraint stop item. Experimental results of many times segmentation of the hippocampus of MRI image show that this algorithm can precisely segment intensity in homogeneities image and improve the segmentation speed, so this algorithm can be applied to the complex structure segmentation, such as the hippocampus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信