一个系统感知的优化数据组织,用于高效的科学分析

Yuan Tian, S. Klasky, Weikuan Yu, H. Abbasi, Bin Wang, N. Podhorszki, R. Grout, M. Wolf
{"title":"一个系统感知的优化数据组织,用于高效的科学分析","authors":"Yuan Tian, S. Klasky, Weikuan Yu, H. Abbasi, Bin Wang, N. Podhorszki, R. Grout, M. Wolf","doi":"10.1145/2287076.2287095","DOIUrl":null,"url":null,"abstract":"Large-scale scientific applications on High End Computing systems produce a large volume of highly complex datasets. Such data imposes a grand challenge to conventional storage systems for the need of efficient I/O solutions during both the simulation runtime and data post-processing phases. With the mounting needs of scientific discovery, the read performance of large-scale simulations has becomes a critical issue for the HPC community. In this study, we propose a system-aware optimized data organization strategy that can organize data blocks of multidimensional scientific data efficiently based on simulation output and the underlying storage systems, thereby enabling efficient scientific analytics. Our experimental results demonstrate a performance speedup up to 72 times for the combustion simulation S3D, compared to the logically contiguous data layout.","PeriodicalId":330072,"journal":{"name":"IEEE International Symposium on High-Performance Parallel Distributed Computing","volume":"53 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A system-aware optimized data organization for efficient scientific analytics\",\"authors\":\"Yuan Tian, S. Klasky, Weikuan Yu, H. Abbasi, Bin Wang, N. Podhorszki, R. Grout, M. Wolf\",\"doi\":\"10.1145/2287076.2287095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large-scale scientific applications on High End Computing systems produce a large volume of highly complex datasets. Such data imposes a grand challenge to conventional storage systems for the need of efficient I/O solutions during both the simulation runtime and data post-processing phases. With the mounting needs of scientific discovery, the read performance of large-scale simulations has becomes a critical issue for the HPC community. In this study, we propose a system-aware optimized data organization strategy that can organize data blocks of multidimensional scientific data efficiently based on simulation output and the underlying storage systems, thereby enabling efficient scientific analytics. Our experimental results demonstrate a performance speedup up to 72 times for the combustion simulation S3D, compared to the logically contiguous data layout.\",\"PeriodicalId\":330072,\"journal\":{\"name\":\"IEEE International Symposium on High-Performance Parallel Distributed Computing\",\"volume\":\"53 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Symposium on High-Performance Parallel Distributed Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2287076.2287095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Symposium on High-Performance Parallel Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2287076.2287095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

高端计算系统上的大规模科学应用产生了大量高度复杂的数据集。这些数据对传统存储系统在模拟运行时和数据后处理阶段都需要高效的I/O解决方案提出了巨大的挑战。随着科学发现需求的不断增长,大规模模拟的读取性能已经成为高性能计算界的一个关键问题。在本研究中,我们提出了一种系统感知的优化数据组织策略,该策略可以基于仿真输出和底层存储系统高效地组织多维科学数据的数据块,从而实现高效的科学分析。实验结果表明,与逻辑上连续的数据布局相比,燃烧模拟S3D的性能加速高达72倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A system-aware optimized data organization for efficient scientific analytics
Large-scale scientific applications on High End Computing systems produce a large volume of highly complex datasets. Such data imposes a grand challenge to conventional storage systems for the need of efficient I/O solutions during both the simulation runtime and data post-processing phases. With the mounting needs of scientific discovery, the read performance of large-scale simulations has becomes a critical issue for the HPC community. In this study, we propose a system-aware optimized data organization strategy that can organize data blocks of multidimensional scientific data efficiently based on simulation output and the underlying storage systems, thereby enabling efficient scientific analytics. Our experimental results demonstrate a performance speedup up to 72 times for the combustion simulation S3D, compared to the logically contiguous data layout.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信