文档图像中的语言识别

Philippine Barlas, David Hebert, Clément Chatelain, Sébastien Adam, T. Paquet
{"title":"文档图像中的语言识别","authors":"Philippine Barlas, David Hebert, Clément Chatelain, Sébastien Adam, T. Paquet","doi":"10.2352/ISSN.2470-1173.2016.17.DRR-058","DOIUrl":null,"url":null,"abstract":"This paper presents a system dedicated to automatic language identification of text regions in heterogeneous and complex documents. This system is able to process documents with mixed printed and handwritten text and various layouts. To handle such a problem, we propose a system that performs the following sub-tasks: writing type identification (printed/handwritten), script identification and language identification. The methods for the writing type recognition and the script discrimination are based on the analysis of the connected components while the language identification approach relies on a statistical text analysis , which requires a recognition engine. We evaluate the system on a new public dataset and present detailed results on the three tasks. Our system outperforms the Google plug-in evaluated on the ground-truth transcriptions of the same dataset.","PeriodicalId":152377,"journal":{"name":"Document Recognition and Retrieval","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Language Identification in Document Images\",\"authors\":\"Philippine Barlas, David Hebert, Clément Chatelain, Sébastien Adam, T. Paquet\",\"doi\":\"10.2352/ISSN.2470-1173.2016.17.DRR-058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a system dedicated to automatic language identification of text regions in heterogeneous and complex documents. This system is able to process documents with mixed printed and handwritten text and various layouts. To handle such a problem, we propose a system that performs the following sub-tasks: writing type identification (printed/handwritten), script identification and language identification. The methods for the writing type recognition and the script discrimination are based on the analysis of the connected components while the language identification approach relies on a statistical text analysis , which requires a recognition engine. We evaluate the system on a new public dataset and present detailed results on the three tasks. Our system outperforms the Google plug-in evaluated on the ground-truth transcriptions of the same dataset.\",\"PeriodicalId\":152377,\"journal\":{\"name\":\"Document Recognition and Retrieval\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Document Recognition and Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2352/ISSN.2470-1173.2016.17.DRR-058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Document Recognition and Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2352/ISSN.2470-1173.2016.17.DRR-058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一个用于异构复杂文档文本区域语言自动识别的系统。该系统能够处理混合印刷和手写文本以及各种布局的文档。为了解决这一问题,我们提出了一个系统,该系统执行以下子任务:书写类型识别(印刷/手写),脚本识别和语言识别。文字类型识别和文字识别方法是基于连接成分的分析,而语言识别方法依赖于统计文本分析,这需要一个识别引擎。我们在一个新的公共数据集上对系统进行了评估,并给出了三个任务的详细结果。我们的系统在对同一数据集的真实转录进行评估时,优于谷歌插件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Language Identification in Document Images
This paper presents a system dedicated to automatic language identification of text regions in heterogeneous and complex documents. This system is able to process documents with mixed printed and handwritten text and various layouts. To handle such a problem, we propose a system that performs the following sub-tasks: writing type identification (printed/handwritten), script identification and language identification. The methods for the writing type recognition and the script discrimination are based on the analysis of the connected components while the language identification approach relies on a statistical text analysis , which requires a recognition engine. We evaluate the system on a new public dataset and present detailed results on the three tasks. Our system outperforms the Google plug-in evaluated on the ground-truth transcriptions of the same dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信