Manish Periwal
{"title":"Generating Semantic Sentences","authors":"Manish Periwal","doi":"10.2139/ssrn.2951669","DOIUrl":null,"url":null,"abstract":"Given the growing complexity of tasks and data in NLP there are limited unsupervised learning methods to tackle the problems. In this paper we will look into novel approach to one of the problems as representing sentences in latent space using Recurrent Neural Network (RNN) and Variational Auto Encoder. Combining VAE-LSTM approach we will repharase (and generate similar and meaningful) sentences from given sentence. An our assumption same architecture can also be applied to language modeling problem. We will give results on using single layer encoder as well as 2 layer encoder for our VAE.","PeriodicalId":246368,"journal":{"name":"RCRN: Other Writing Technologies (Topic)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RCRN: Other Writing Technologies (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2951669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

鉴于NLP中任务和数据的日益复杂,解决这些问题的无监督学习方法有限。在本文中,我们将研究使用递归神经网络(RNN)和变分自编码器来解决潜在空间中句子表示问题之一的新方法。结合vee - lstm方法,我们将从给定的句子中重新措辞(并生成相似且有意义的句子)。我们假设同样的体系结构也可以应用于语言建模问题。我们将给出对VAE使用单层编码器和两层编码器的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generating Semantic Sentences
Given the growing complexity of tasks and data in NLP there are limited unsupervised learning methods to tackle the problems. In this paper we will look into novel approach to one of the problems as representing sentences in latent space using Recurrent Neural Network (RNN) and Variational Auto Encoder. Combining VAE-LSTM approach we will repharase (and generate similar and meaningful) sentences from given sentence. An our assumption same architecture can also be applied to language modeling problem. We will give results on using single layer encoder as well as 2 layer encoder for our VAE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信