精制ah -等距法及其在精制中性粒细胞表面上的应用

M. Çelik, Ahmed Hatip
{"title":"精制ah -等距法及其在精制中性粒细胞表面上的应用","authors":"M. Çelik, Ahmed Hatip","doi":"10.54216/gjmsa.020103","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to generalize the neutrosophic AH-isometry into the system of refined neutrosophic numbers, where it presents an isometer between the refined neutrosophic space with one/two neutrosophic dimensions and the cartesian product of classical Euclidean spaces.Also, many refined neutrosophic geometrical surfaces such as refined circles and lines will be handled according to the isometry.","PeriodicalId":299243,"journal":{"name":"Galoitica: Journal of Mathematical Structures and Applications","volume":"40 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Refined AH-Isometry and Its Applications in Refined Neutrosophic Surfaces\",\"authors\":\"M. Çelik, Ahmed Hatip\",\"doi\":\"10.54216/gjmsa.020103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to generalize the neutrosophic AH-isometry into the system of refined neutrosophic numbers, where it presents an isometer between the refined neutrosophic space with one/two neutrosophic dimensions and the cartesian product of classical Euclidean spaces.Also, many refined neutrosophic geometrical surfaces such as refined circles and lines will be handled according to the isometry.\",\"PeriodicalId\":299243,\"journal\":{\"name\":\"Galoitica: Journal of Mathematical Structures and Applications\",\"volume\":\"40 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Galoitica: Journal of Mathematical Structures and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54216/gjmsa.020103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Galoitica: Journal of Mathematical Structures and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54216/gjmsa.020103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是将嗜中性ah -等距推广到嗜中性数的精细化系统中,在此系统中给出了嗜中性1 / 2维的精细化空间与经典欧几里德空间的笛卡尔积之间的等距。此外,许多精致的中性几何表面,如精致的圆和线,将根据等距来处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Refined AH-Isometry and Its Applications in Refined Neutrosophic Surfaces
The aim of this paper is to generalize the neutrosophic AH-isometry into the system of refined neutrosophic numbers, where it presents an isometer between the refined neutrosophic space with one/two neutrosophic dimensions and the cartesian product of classical Euclidean spaces.Also, many refined neutrosophic geometrical surfaces such as refined circles and lines will be handled according to the isometry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信