基于尺度间相关的非抽取小波收缩图像去噪算法

V. Vidya
{"title":"基于尺度间相关的非抽取小波收缩图像去噪算法","authors":"V. Vidya","doi":"10.1109/FGCNS.2008.19","DOIUrl":null,"url":null,"abstract":"This paper presents an image denoising scheme based on the correlation of the wavelet coefficients. It is well settled that significant features in images evolve with high magnitude across wavelet scales, while noise decays rapidly. Multiplying the adjacent wavelet scales sharpens the edges structures while weakening noise. This property is exploited by applying threshold to the scale correlation to identify the important features. Non-decimated wavelet transform is used here. Experiments shows that proposed method gives better results compared to other related works.","PeriodicalId":370780,"journal":{"name":"2008 Second International Conference on Future Generation Communication and Networking Symposia","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Non-Decimated Wavelet Shrinkage Algorithm for Image Denoising Based on Inter-Scale Correlation\",\"authors\":\"V. Vidya\",\"doi\":\"10.1109/FGCNS.2008.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an image denoising scheme based on the correlation of the wavelet coefficients. It is well settled that significant features in images evolve with high magnitude across wavelet scales, while noise decays rapidly. Multiplying the adjacent wavelet scales sharpens the edges structures while weakening noise. This property is exploited by applying threshold to the scale correlation to identify the important features. Non-decimated wavelet transform is used here. Experiments shows that proposed method gives better results compared to other related works.\",\"PeriodicalId\":370780,\"journal\":{\"name\":\"2008 Second International Conference on Future Generation Communication and Networking Symposia\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Second International Conference on Future Generation Communication and Networking Symposia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FGCNS.2008.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Second International Conference on Future Generation Communication and Networking Symposia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FGCNS.2008.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于小波系数相关性的图像去噪方案。众所周知,图像中的重要特征在小波尺度上以高幅度演化,而噪声衰减迅速。相邻小波尺度的乘积使边缘结构变得锐利,同时减弱了噪声。通过对尺度相关性应用阈值来识别重要特征,可以利用这一特性。这里使用非抽取小波变换。实验表明,与其他相关工作相比,该方法具有更好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-Decimated Wavelet Shrinkage Algorithm for Image Denoising Based on Inter-Scale Correlation
This paper presents an image denoising scheme based on the correlation of the wavelet coefficients. It is well settled that significant features in images evolve with high magnitude across wavelet scales, while noise decays rapidly. Multiplying the adjacent wavelet scales sharpens the edges structures while weakening noise. This property is exploited by applying threshold to the scale correlation to identify the important features. Non-decimated wavelet transform is used here. Experiments shows that proposed method gives better results compared to other related works.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信