使用不同附加项的目标聚类的模糊半监督聚类

S. Miyamoto, Mitsuaki Yamazaki, Wataru Hashimoto
{"title":"使用不同附加项的目标聚类的模糊半监督聚类","authors":"S. Miyamoto, Mitsuaki Yamazaki, Wataru Hashimoto","doi":"10.1109/GRC.2009.5255080","DOIUrl":null,"url":null,"abstract":"This paper discusses a method of semi-supervised fuzzy clustering with target clusters. The method uses two kinds of additional terms to ordinary fuzzy c-means objective function. One term consists of the sum of squared differences between the target cluster memberships and the membership of the solution, whereas second term has the sum of absolute differences of those memberships. While the former has a closed formula for the membership solution, the second requires a complicated algorithm. However, numerical example show that the latter method of the absolute differences works better.","PeriodicalId":388774,"journal":{"name":"2009 IEEE International Conference on Granular Computing","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Fuzzy semi-supervised clustering with target clusters using different additional terms\",\"authors\":\"S. Miyamoto, Mitsuaki Yamazaki, Wataru Hashimoto\",\"doi\":\"10.1109/GRC.2009.5255080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses a method of semi-supervised fuzzy clustering with target clusters. The method uses two kinds of additional terms to ordinary fuzzy c-means objective function. One term consists of the sum of squared differences between the target cluster memberships and the membership of the solution, whereas second term has the sum of absolute differences of those memberships. While the former has a closed formula for the membership solution, the second requires a complicated algorithm. However, numerical example show that the latter method of the absolute differences works better.\",\"PeriodicalId\":388774,\"journal\":{\"name\":\"2009 IEEE International Conference on Granular Computing\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Granular Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GRC.2009.5255080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Granular Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GRC.2009.5255080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

讨论了一种带目标聚类的半监督模糊聚类方法。该方法在普通模糊c均值目标函数的基础上增加了两类附加项。其中一项由目标集群隶属度与解的隶属度之间的差的平方和组成,而第二项是这些隶属度的绝对差的和。前者有一个封闭的隶属度解公式,而后者需要一个复杂的算法。然而,数值算例表明,后一种绝对差法效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy semi-supervised clustering with target clusters using different additional terms
This paper discusses a method of semi-supervised fuzzy clustering with target clusters. The method uses two kinds of additional terms to ordinary fuzzy c-means objective function. One term consists of the sum of squared differences between the target cluster memberships and the membership of the solution, whereas second term has the sum of absolute differences of those memberships. While the former has a closed formula for the membership solution, the second requires a complicated algorithm. However, numerical example show that the latter method of the absolute differences works better.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信