使用多模态增强技术对浓雾和朦胧天气图像的视觉改进

P. K. Chaturvedi, R. Vijay, R. Nirala
{"title":"使用多模态增强技术对浓雾和朦胧天气图像的视觉改进","authors":"P. K. Chaturvedi, R. Vijay, R. Nirala","doi":"10.1109/ICMETE.2016.68","DOIUrl":null,"url":null,"abstract":"Image enhancement processes consist of a collection of techniques that inquire about to improve the visual appearance of degraded image. This paper introduces a multimodal enhancement technique for dense foggy images. The present available techniques don't work in low visibility like dense fog. The proposed methods changes the intensity component among the converted HIS components from the RGB components of the original foggy image. Again by converting back to RGB components, the foggy image tends to appear more clearly than the original image in terms of Peak Signal to Noise Ratio (PSNR) and Mean Square Error (MSE).[2] Finally the enhanced foggy image is obtained and the results are presented [9].","PeriodicalId":167368,"journal":{"name":"2016 International Conference on Micro-Electronics and Telecommunication Engineering (ICMETE)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Visual Improvement for Dense Foggy & Hazy Weather Images, Using Multimodal Enhancement Techniques\",\"authors\":\"P. K. Chaturvedi, R. Vijay, R. Nirala\",\"doi\":\"10.1109/ICMETE.2016.68\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image enhancement processes consist of a collection of techniques that inquire about to improve the visual appearance of degraded image. This paper introduces a multimodal enhancement technique for dense foggy images. The present available techniques don't work in low visibility like dense fog. The proposed methods changes the intensity component among the converted HIS components from the RGB components of the original foggy image. Again by converting back to RGB components, the foggy image tends to appear more clearly than the original image in terms of Peak Signal to Noise Ratio (PSNR) and Mean Square Error (MSE).[2] Finally the enhanced foggy image is obtained and the results are presented [9].\",\"PeriodicalId\":167368,\"journal\":{\"name\":\"2016 International Conference on Micro-Electronics and Telecommunication Engineering (ICMETE)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Micro-Electronics and Telecommunication Engineering (ICMETE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMETE.2016.68\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Micro-Electronics and Telecommunication Engineering (ICMETE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMETE.2016.68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

图像增强过程包括一系列旨在改善降级图像视觉外观的技术。本文介绍了一种用于浓雾图像的多模态增强技术。目前可用的技术不能在像浓雾这样的低能见度下工作。该方法将原始雾天图像的RGB分量转换为HIS分量之间的强度分量。同样,通过转换回RGB分量,雾天图像在峰值信噪比(PSNR)和均方误差(MSE)方面往往比原始图像更清晰。[2]最后得到增强雾图像并给出结果[9]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visual Improvement for Dense Foggy & Hazy Weather Images, Using Multimodal Enhancement Techniques
Image enhancement processes consist of a collection of techniques that inquire about to improve the visual appearance of degraded image. This paper introduces a multimodal enhancement technique for dense foggy images. The present available techniques don't work in low visibility like dense fog. The proposed methods changes the intensity component among the converted HIS components from the RGB components of the original foggy image. Again by converting back to RGB components, the foggy image tends to appear more clearly than the original image in terms of Peak Signal to Noise Ratio (PSNR) and Mean Square Error (MSE).[2] Finally the enhanced foggy image is obtained and the results are presented [9].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信