未知输入饱和倒立摆系统的神经网络解耦滑模控制

Tang Xiaoqing, Chen Qiang
{"title":"未知输入饱和倒立摆系统的神经网络解耦滑模控制","authors":"Tang Xiaoqing, Chen Qiang","doi":"10.1109/ICISCE.2015.191","DOIUrl":null,"url":null,"abstract":"In this paper, a neural-network decoupled sliding-mode control (NNDSMC) scheme is proposed for inverted pendulum system with unknown input saturation. The input saturation is approximated by a smooth affine function according to the mean-value theorem. By decoupling the whole inverted pendulum system into two second-order subsystems, two sliding manifolds are designed for each subsystem, in which the first sliding manifold includes an intermediate variable related to the second one. Finally, a nonsingular terminal sliding-mode control is employed for both subsystems by using a simple sigmoid neural network to approximate the unknown system nonlinearity. Simulations show the effectiveness of the presented method.","PeriodicalId":356250,"journal":{"name":"2015 2nd International Conference on Information Science and Control Engineering","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Neural-Network Decoupled Sliding-Mode Control for Inverted Pendulum System with Unknown Input Saturation\",\"authors\":\"Tang Xiaoqing, Chen Qiang\",\"doi\":\"10.1109/ICISCE.2015.191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a neural-network decoupled sliding-mode control (NNDSMC) scheme is proposed for inverted pendulum system with unknown input saturation. The input saturation is approximated by a smooth affine function according to the mean-value theorem. By decoupling the whole inverted pendulum system into two second-order subsystems, two sliding manifolds are designed for each subsystem, in which the first sliding manifold includes an intermediate variable related to the second one. Finally, a nonsingular terminal sliding-mode control is employed for both subsystems by using a simple sigmoid neural network to approximate the unknown system nonlinearity. Simulations show the effectiveness of the presented method.\",\"PeriodicalId\":356250,\"journal\":{\"name\":\"2015 2nd International Conference on Information Science and Control Engineering\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 2nd International Conference on Information Science and Control Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICISCE.2015.191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 2nd International Conference on Information Science and Control Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISCE.2015.191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

针对输入饱和未知的倒立摆系统,提出了一种神经网络解耦滑模控制方案。根据中值定理,用光滑仿射函数逼近输入饱和。通过将整个倒立摆系统解耦为两个二阶子系统,为每个子系统设计两个滑动流形,其中第一个滑动流形包含一个与第二个滑动流形相关的中间变量。最后,利用简单的s型神经网络对两个子系统进行非奇异终端滑模控制,逼近系统的未知非线性。仿真结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural-Network Decoupled Sliding-Mode Control for Inverted Pendulum System with Unknown Input Saturation
In this paper, a neural-network decoupled sliding-mode control (NNDSMC) scheme is proposed for inverted pendulum system with unknown input saturation. The input saturation is approximated by a smooth affine function according to the mean-value theorem. By decoupling the whole inverted pendulum system into two second-order subsystems, two sliding manifolds are designed for each subsystem, in which the first sliding manifold includes an intermediate variable related to the second one. Finally, a nonsingular terminal sliding-mode control is employed for both subsystems by using a simple sigmoid neural network to approximate the unknown system nonlinearity. Simulations show the effectiveness of the presented method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信