{"title":"保障按需医疗信息物理系统的安全","authors":"Andrew L. King, Lu Feng, O. Sokolsky, Insup Lee","doi":"10.1109/CPSNA.2013.6614238","DOIUrl":null,"url":null,"abstract":"We present an approach to establish safety of on-demand medical cyber-physical systems which are assembled to treat a patient in a specific clinical scenario. We treat such a system as a virtual medial device (VMD) and propose a model-based framework that includes a modeling language with formal semantics and a medical application platform (MAP) that provides the necessary deployment support for the VMD models.","PeriodicalId":212743,"journal":{"name":"2013 IEEE 1st International Conference on Cyber-Physical Systems, Networks, and Applications (CPSNA)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Assuring the safety of on-demand medical cyber-physical systems\",\"authors\":\"Andrew L. King, Lu Feng, O. Sokolsky, Insup Lee\",\"doi\":\"10.1109/CPSNA.2013.6614238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an approach to establish safety of on-demand medical cyber-physical systems which are assembled to treat a patient in a specific clinical scenario. We treat such a system as a virtual medial device (VMD) and propose a model-based framework that includes a modeling language with formal semantics and a medical application platform (MAP) that provides the necessary deployment support for the VMD models.\",\"PeriodicalId\":212743,\"journal\":{\"name\":\"2013 IEEE 1st International Conference on Cyber-Physical Systems, Networks, and Applications (CPSNA)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 1st International Conference on Cyber-Physical Systems, Networks, and Applications (CPSNA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CPSNA.2013.6614238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 1st International Conference on Cyber-Physical Systems, Networks, and Applications (CPSNA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CPSNA.2013.6614238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Assuring the safety of on-demand medical cyber-physical systems
We present an approach to establish safety of on-demand medical cyber-physical systems which are assembled to treat a patient in a specific clinical scenario. We treat such a system as a virtual medial device (VMD) and propose a model-based framework that includes a modeling language with formal semantics and a medical application platform (MAP) that provides the necessary deployment support for the VMD models.