利用包围式BL PAD结构改进VNAND的gidl辅助擦除

Suhwan Lim, Samki Kim, Changhee Lee, Hyeongwon Choi, Nambin Kim, Jaehun Jung, Hanvit Yang, Taehyeok Kim, Junhee Lim, Daewon Ha, Sunghoi Hur, J. Jang, Y. Shin, J. Song
{"title":"利用包围式BL PAD结构改进VNAND的gidl辅助擦除","authors":"Suhwan Lim, Samki Kim, Changhee Lee, Hyeongwon Choi, Nambin Kim, Jaehun Jung, Hanvit Yang, Taehyeok Kim, Junhee Lim, Daewon Ha, Sunghoi Hur, J. Jang, Y. Shin, J. Song","doi":"10.1109/IMW56887.2023.10145963","DOIUrl":null,"url":null,"abstract":"We propose a novel structure to enhance transverse band-to-band tunneling (T-BTBT) for the erase scheme assisted by gate induced drain leakage (GIDL) to improve the erase speed of high density vertical NAND (VNAND). In order to increase the GIDL current, we adopt the structure, in which the bit-line PAD (BL PAD) is surrounded by the GIDL transistors, to the top part of the VNAND memory string. In this structure, the $n^{+}-$doped region called the BL PAD is pulled down so that its bottom is placed below the bottom of the first GIDL transistor and the gate-to-drain overlap area is increased. Furthermore, the $n^{+}-$doped poly-Si region of the BL PAD is covered with the undoped poly-Si layer to reduce the n type doping concentration in the overlap region between the BL PAD and GIDL transistor. Thus, the depletion region is formed between the $n^{+}-$doped BL PAD and undoped channel poly-Si regions. Then, in contrast to the conventional structure where the longitudinal BTBT (L-BTBT) current dominates, the TBTBT current occurs in such a depletion region and becomes the dominant GIDL current. The proposed structure on a VNAND device array is experimentally verified, and we obtain the GIDL current which is 5 times larger than that in VNAND to which the conventional ion implantation structure applied. Such a large GIDL current is suitable even for VNAND with more than 1000 layers of word line stacked.","PeriodicalId":153429,"journal":{"name":"2023 IEEE International Memory Workshop (IMW)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improvement of GIDL-assisted Erase by using Surrounded BL PAD Structure for VNAND\",\"authors\":\"Suhwan Lim, Samki Kim, Changhee Lee, Hyeongwon Choi, Nambin Kim, Jaehun Jung, Hanvit Yang, Taehyeok Kim, Junhee Lim, Daewon Ha, Sunghoi Hur, J. Jang, Y. Shin, J. Song\",\"doi\":\"10.1109/IMW56887.2023.10145963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel structure to enhance transverse band-to-band tunneling (T-BTBT) for the erase scheme assisted by gate induced drain leakage (GIDL) to improve the erase speed of high density vertical NAND (VNAND). In order to increase the GIDL current, we adopt the structure, in which the bit-line PAD (BL PAD) is surrounded by the GIDL transistors, to the top part of the VNAND memory string. In this structure, the $n^{+}-$doped region called the BL PAD is pulled down so that its bottom is placed below the bottom of the first GIDL transistor and the gate-to-drain overlap area is increased. Furthermore, the $n^{+}-$doped poly-Si region of the BL PAD is covered with the undoped poly-Si layer to reduce the n type doping concentration in the overlap region between the BL PAD and GIDL transistor. Thus, the depletion region is formed between the $n^{+}-$doped BL PAD and undoped channel poly-Si regions. Then, in contrast to the conventional structure where the longitudinal BTBT (L-BTBT) current dominates, the TBTBT current occurs in such a depletion region and becomes the dominant GIDL current. The proposed structure on a VNAND device array is experimentally verified, and we obtain the GIDL current which is 5 times larger than that in VNAND to which the conventional ion implantation structure applied. Such a large GIDL current is suitable even for VNAND with more than 1000 layers of word line stacked.\",\"PeriodicalId\":153429,\"journal\":{\"name\":\"2023 IEEE International Memory Workshop (IMW)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Memory Workshop (IMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMW56887.2023.10145963\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Memory Workshop (IMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMW56887.2023.10145963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了提高高密度垂直NAND (VNAND)的擦除速度,我们提出了一种新的结构来增强栅极诱发漏漏(GIDL)辅助擦除方案的横向带对带隧道(t - tbbt)。为了增加GIDL电流,我们采用了位线PAD (BL PAD)被GIDL晶体管包围到VNAND存储器串顶部的结构。在这种结构中,被称为BL PAD的$n^{+}-$掺杂区域被拉下,使其底部位于第一个GIDL晶体管底部下方,栅极-漏极重叠面积增加。此外,在BL PAD的n^{+}-$掺杂多晶硅区域被未掺杂多晶硅层覆盖,以降低BL PAD与GIDL晶体管重叠区域的n型掺杂浓度。因此,在$n^{+}-$掺杂的BL - PAD和未掺杂的多晶硅沟道区之间形成了耗尽区。然后,与传统的纵向BTBT (L-BTBT)电流占主导地位的结构相反,TBTBT电流发生在这样的耗尽区,并成为主导的GIDL电流。实验验证了该结构在VNAND器件阵列上的作用,并获得了比传统离子注入结构在VNAND上的作用大5倍的GIDL电流。如此大的GIDL电流甚至适用于具有超过1000层字线堆叠的VNAND。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improvement of GIDL-assisted Erase by using Surrounded BL PAD Structure for VNAND
We propose a novel structure to enhance transverse band-to-band tunneling (T-BTBT) for the erase scheme assisted by gate induced drain leakage (GIDL) to improve the erase speed of high density vertical NAND (VNAND). In order to increase the GIDL current, we adopt the structure, in which the bit-line PAD (BL PAD) is surrounded by the GIDL transistors, to the top part of the VNAND memory string. In this structure, the $n^{+}-$doped region called the BL PAD is pulled down so that its bottom is placed below the bottom of the first GIDL transistor and the gate-to-drain overlap area is increased. Furthermore, the $n^{+}-$doped poly-Si region of the BL PAD is covered with the undoped poly-Si layer to reduce the n type doping concentration in the overlap region between the BL PAD and GIDL transistor. Thus, the depletion region is formed between the $n^{+}-$doped BL PAD and undoped channel poly-Si regions. Then, in contrast to the conventional structure where the longitudinal BTBT (L-BTBT) current dominates, the TBTBT current occurs in such a depletion region and becomes the dominant GIDL current. The proposed structure on a VNAND device array is experimentally verified, and we obtain the GIDL current which is 5 times larger than that in VNAND to which the conventional ion implantation structure applied. Such a large GIDL current is suitable even for VNAND with more than 1000 layers of word line stacked.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信