面向边缘计算的分布式大数据计算平台

Dumitrel Loghin, Lavanya Ramapantulu, Y. M. Teo
{"title":"面向边缘计算的分布式大数据计算平台","authors":"Dumitrel Loghin, Lavanya Ramapantulu, Y. M. Teo","doi":"10.1049/pbpc033e_ch9","DOIUrl":null,"url":null,"abstract":"In this chapter, we present and analyze some popular platforms for Big Data processing, with a focus on edge computing. We start with a review of edge computing, followed by a classification of frameworks and models for Big Data processing. In the next section, we describe some well-known platforms for Big Data processing, such as MapReduce, Spark, Flink and Google Cloud Dataflow with its open-source version under Apache Beam. In different section, we present Big Data frameworks specific to edge computing, including hybrid MapReduce and Apache Edgent. Finally, we summarize the chapter by presenting challenges and opportunities for research in this area.","PeriodicalId":314870,"journal":{"name":"Edge Computing: Models, technologies and applications","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed big data computing platforms for edge computing\",\"authors\":\"Dumitrel Loghin, Lavanya Ramapantulu, Y. M. Teo\",\"doi\":\"10.1049/pbpc033e_ch9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this chapter, we present and analyze some popular platforms for Big Data processing, with a focus on edge computing. We start with a review of edge computing, followed by a classification of frameworks and models for Big Data processing. In the next section, we describe some well-known platforms for Big Data processing, such as MapReduce, Spark, Flink and Google Cloud Dataflow with its open-source version under Apache Beam. In different section, we present Big Data frameworks specific to edge computing, including hybrid MapReduce and Apache Edgent. Finally, we summarize the chapter by presenting challenges and opportunities for research in this area.\",\"PeriodicalId\":314870,\"journal\":{\"name\":\"Edge Computing: Models, technologies and applications\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Edge Computing: Models, technologies and applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/pbpc033e_ch9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Edge Computing: Models, technologies and applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/pbpc033e_ch9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本章中,我们介绍并分析了一些流行的大数据处理平台,重点是边缘计算。我们从边缘计算的回顾开始,然后是大数据处理框架和模型的分类。在下一节中,我们将介绍一些知名的大数据处理平台,如MapReduce、Spark、Flink和Google Cloud Dataflow及其在Apache Beam下的开源版本。在不同的章节中,我们介绍了特定于边缘计算的大数据框架,包括混合MapReduce和Apache Edgent。最后,我们总结了本章,提出了该领域研究的挑战和机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed big data computing platforms for edge computing
In this chapter, we present and analyze some popular platforms for Big Data processing, with a focus on edge computing. We start with a review of edge computing, followed by a classification of frameworks and models for Big Data processing. In the next section, we describe some well-known platforms for Big Data processing, such as MapReduce, Spark, Flink and Google Cloud Dataflow with its open-source version under Apache Beam. In different section, we present Big Data frameworks specific to edge computing, including hybrid MapReduce and Apache Edgent. Finally, we summarize the chapter by presenting challenges and opportunities for research in this area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信