高斯窃听格码从二进制自对偶码

Fuchun Lin, F. Oggier
{"title":"高斯窃听格码从二进制自对偶码","authors":"Fuchun Lin, F. Oggier","doi":"10.1109/ITW.2012.6404761","DOIUrl":null,"url":null,"abstract":"We consider lattice coding over a Gaussian wiretap channel with respect to the secrecy gain, a lattice invariant introduced in [1] to characterize the confusion that a chosen lattice can cause at the eavesdropper. The secrecy gain of the best unimodular lattices constructed from binary self-dual codes in dimension n, 24 ≤ n ≤ 32 are calculated. Numerical upper bounds on the secrecy gain of unimodular lattices in general and of unimodular lattices constructed from binary self-dual codes in particular are derived for all even dimensions up to 168.","PeriodicalId":325771,"journal":{"name":"2012 IEEE Information Theory Workshop","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Gaussian wiretap lattice codes from binary self-dual codes\",\"authors\":\"Fuchun Lin, F. Oggier\",\"doi\":\"10.1109/ITW.2012.6404761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider lattice coding over a Gaussian wiretap channel with respect to the secrecy gain, a lattice invariant introduced in [1] to characterize the confusion that a chosen lattice can cause at the eavesdropper. The secrecy gain of the best unimodular lattices constructed from binary self-dual codes in dimension n, 24 ≤ n ≤ 32 are calculated. Numerical upper bounds on the secrecy gain of unimodular lattices in general and of unimodular lattices constructed from binary self-dual codes in particular are derived for all even dimensions up to 168.\",\"PeriodicalId\":325771,\"journal\":{\"name\":\"2012 IEEE Information Theory Workshop\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Information Theory Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW.2012.6404761\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Information Theory Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW.2012.6404761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

我们考虑在高斯窃听信道上的晶格编码与保密增益有关,这是在[1]中引入的晶格不变量,用于表征所选晶格可能在窃听者处引起的混乱。计算了由n、24≤n≤32维二进制自对偶码构造的最佳单模格的保密增益。给出了一般单模格的保密增益的数值上界,特别是由二进制自对偶码构造的单模格的保密增益的数值上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gaussian wiretap lattice codes from binary self-dual codes
We consider lattice coding over a Gaussian wiretap channel with respect to the secrecy gain, a lattice invariant introduced in [1] to characterize the confusion that a chosen lattice can cause at the eavesdropper. The secrecy gain of the best unimodular lattices constructed from binary self-dual codes in dimension n, 24 ≤ n ≤ 32 are calculated. Numerical upper bounds on the secrecy gain of unimodular lattices in general and of unimodular lattices constructed from binary self-dual codes in particular are derived for all even dimensions up to 168.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信