形式

Panos Matsinopoulos
{"title":"形式","authors":"Panos Matsinopoulos","doi":"10.4337/9781788970228.00023","DOIUrl":null,"url":null,"abstract":". We consider the problem of whether it is possible to improve the Novikov inequalities for closed 1-forms, or any other inequalities of a similar nature, if we assume, additionally, that the given 1-form is harmonic with respect to some Riemannian metric. We show that, under suitable assumptions, it is impossible. We use a theorem of E.Calabi [C], characterizing 1-forms which are harmonic with respect to some metric, in an essential way. We also study some interesting examples illustrating our results.","PeriodicalId":413000,"journal":{"name":"Practical Bootstrap","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forms\",\"authors\":\"Panos Matsinopoulos\",\"doi\":\"10.4337/9781788970228.00023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We consider the problem of whether it is possible to improve the Novikov inequalities for closed 1-forms, or any other inequalities of a similar nature, if we assume, additionally, that the given 1-form is harmonic with respect to some Riemannian metric. We show that, under suitable assumptions, it is impossible. We use a theorem of E.Calabi [C], characterizing 1-forms which are harmonic with respect to some metric, in an essential way. We also study some interesting examples illustrating our results.\",\"PeriodicalId\":413000,\"journal\":{\"name\":\"Practical Bootstrap\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Practical Bootstrap\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4337/9781788970228.00023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Practical Bootstrap","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4337/9781788970228.00023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

。我们考虑是否有可能改进Novikov不等式对于封闭1-形式,或任何其他类似性质的不等式,如果我们另外假设,给定的1-形式对某些黎曼度规是调和的。我们证明,在适当的假设下,这是不可能的。我们使用E.Calabi [C]的一个定理,以一种基本的方式刻画了关于某个度规的调和1型。我们还研究了一些有趣的例子来说明我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forms
. We consider the problem of whether it is possible to improve the Novikov inequalities for closed 1-forms, or any other inequalities of a similar nature, if we assume, additionally, that the given 1-form is harmonic with respect to some Riemannian metric. We show that, under suitable assumptions, it is impossible. We use a theorem of E.Calabi [C], characterizing 1-forms which are harmonic with respect to some metric, in an essential way. We also study some interesting examples illustrating our results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信