社交网络中的竞争性意见最大化

Jianjun Luo, Xinyue Liu, Xiangnan Kong
{"title":"社交网络中的竞争性意见最大化","authors":"Jianjun Luo, Xinyue Liu, Xiangnan Kong","doi":"10.1145/3341161.3342899","DOIUrl":null,"url":null,"abstract":"Influence maximization in social networks has been intensively studied in recent years, where the goal is to find a small set of seed nodes in a social network that maximizes the spread of influence according to a diffusion model. Recent research on influence maximization mainly focuses on incorporating either user opinions or competitive settings in the influence diffusion model. In many real-world applications, however, the influence diffusion process often involves both real-valued opinions from users and multiple parties that are competing with each other. In this paper, we study the problem of competitive opinion maximization, where the game of influence diffusion includes multiple competing products and the goal is to maximize the total opinions of activated users by each product. This problem is very challenging because it is #P-hard and no longer keeps the property of submodularity. We propose a novel model, called ICOM (Iterative Competitive Opinion Maximization), that can effectively and efficiently maximize the total opinions in competitive games by taking user opinions as well as the competitor's strategy into account. Different from existing influence maximization methods, we inhibit the spread of negative opinions and search for the optimal response to opponents' choices of seed nodes. We apply iterative inference based on a greedy algorithm to reduce the computational complexity. Empirical studies on real-world datasets demonstrate that comparing with several baseline methods, our approach can effectively and efficiently improve the total opinions achieved by the promoted product in the competitive network.","PeriodicalId":403360,"journal":{"name":"2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Competitive Opinion Maximization in Social Networks\",\"authors\":\"Jianjun Luo, Xinyue Liu, Xiangnan Kong\",\"doi\":\"10.1145/3341161.3342899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Influence maximization in social networks has been intensively studied in recent years, where the goal is to find a small set of seed nodes in a social network that maximizes the spread of influence according to a diffusion model. Recent research on influence maximization mainly focuses on incorporating either user opinions or competitive settings in the influence diffusion model. In many real-world applications, however, the influence diffusion process often involves both real-valued opinions from users and multiple parties that are competing with each other. In this paper, we study the problem of competitive opinion maximization, where the game of influence diffusion includes multiple competing products and the goal is to maximize the total opinions of activated users by each product. This problem is very challenging because it is #P-hard and no longer keeps the property of submodularity. We propose a novel model, called ICOM (Iterative Competitive Opinion Maximization), that can effectively and efficiently maximize the total opinions in competitive games by taking user opinions as well as the competitor's strategy into account. Different from existing influence maximization methods, we inhibit the spread of negative opinions and search for the optimal response to opponents' choices of seed nodes. We apply iterative inference based on a greedy algorithm to reduce the computational complexity. Empirical studies on real-world datasets demonstrate that comparing with several baseline methods, our approach can effectively and efficiently improve the total opinions achieved by the promoted product in the competitive network.\",\"PeriodicalId\":403360,\"journal\":{\"name\":\"2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3341161.3342899\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3341161.3342899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

近年来,社会网络中的影响力最大化问题得到了深入的研究,其目标是根据扩散模型在社会网络中找到一小部分种子节点,使影响力的传播最大化。最近关于影响力最大化的研究主要集中在将用户意见或竞争环境纳入影响力扩散模型中。然而,在许多实际应用中,影响扩散过程往往既涉及用户的实际价值意见,也涉及相互竞争的多方意见。本文研究了竞争意见最大化问题,其中影响扩散博弈包含多个竞争产品,目标是最大化每个产品激活用户的总意见。这个问题非常具有挑战性,因为它是#P-hard的,并且不再保持子模块化的属性。我们提出了一个新的模型,称为ICOM(迭代竞争意见最大化),它可以通过考虑用户意见和竞争对手的策略,有效地最大化竞争游戏中的总意见。与现有的影响力最大化方法不同,我们抑制负面意见的传播,并寻找对手选择种子节点的最优响应。我们采用基于贪婪算法的迭代推理来降低计算复杂度。对真实数据集的实证研究表明,与几种基线方法相比,我们的方法可以有效地提高竞争网络中推广产品的总意见。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Competitive Opinion Maximization in Social Networks
Influence maximization in social networks has been intensively studied in recent years, where the goal is to find a small set of seed nodes in a social network that maximizes the spread of influence according to a diffusion model. Recent research on influence maximization mainly focuses on incorporating either user opinions or competitive settings in the influence diffusion model. In many real-world applications, however, the influence diffusion process often involves both real-valued opinions from users and multiple parties that are competing with each other. In this paper, we study the problem of competitive opinion maximization, where the game of influence diffusion includes multiple competing products and the goal is to maximize the total opinions of activated users by each product. This problem is very challenging because it is #P-hard and no longer keeps the property of submodularity. We propose a novel model, called ICOM (Iterative Competitive Opinion Maximization), that can effectively and efficiently maximize the total opinions in competitive games by taking user opinions as well as the competitor's strategy into account. Different from existing influence maximization methods, we inhibit the spread of negative opinions and search for the optimal response to opponents' choices of seed nodes. We apply iterative inference based on a greedy algorithm to reduce the computational complexity. Empirical studies on real-world datasets demonstrate that comparing with several baseline methods, our approach can effectively and efficiently improve the total opinions achieved by the promoted product in the competitive network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信