我看到了您在这里所做的:了解何时使用NOVA信任ML模型

Tobias Baur, Alexander Heimerl, F. Lingenfelser, E. André
{"title":"我看到了您在这里所做的:了解何时使用NOVA信任ML模型","authors":"Tobias Baur, Alexander Heimerl, F. Lingenfelser, E. André","doi":"10.1109/ACIIW.2019.8925214","DOIUrl":null,"url":null,"abstract":"In this demo paper we present NOVA, a machine learning and explanation interface that focuses on the automated analysis of social interactions. NOVA combines Cooperative Machine Learning (CML) and explainable AI (XAI) methods to reduce manual labelling efforts while simultaneously generating an intuitive understanding of the learning process of a classification system. Therefore, NOVA features a semi-automated labelling process in which users are provided with immediate visual feedback on the predictions, which gives insights into the strengths and weaknesses of the underlying classification system. Following an interactive and exploratory workflow, the performance of the model can be improved by manual revision of the predictions.","PeriodicalId":193568,"journal":{"name":"2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"I see what you did there: Understanding when to trust a ML model with NOVA\",\"authors\":\"Tobias Baur, Alexander Heimerl, F. Lingenfelser, E. André\",\"doi\":\"10.1109/ACIIW.2019.8925214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this demo paper we present NOVA, a machine learning and explanation interface that focuses on the automated analysis of social interactions. NOVA combines Cooperative Machine Learning (CML) and explainable AI (XAI) methods to reduce manual labelling efforts while simultaneously generating an intuitive understanding of the learning process of a classification system. Therefore, NOVA features a semi-automated labelling process in which users are provided with immediate visual feedback on the predictions, which gives insights into the strengths and weaknesses of the underlying classification system. Following an interactive and exploratory workflow, the performance of the model can be improved by manual revision of the predictions.\",\"PeriodicalId\":193568,\"journal\":{\"name\":\"2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACIIW.2019.8925214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIIW.2019.8925214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这篇演示论文中,我们介绍了NOVA,这是一个专注于社会互动自动分析的机器学习和解释界面。NOVA结合了合作机器学习(CML)和可解释的人工智能(XAI)方法,减少了人工标记的工作量,同时对分类系统的学习过程产生了直观的理解。因此,NOVA的特点是一个半自动化的标签过程,在这个过程中,用户可以获得关于预测的即时视觉反馈,从而深入了解底层分类系统的优缺点。遵循交互式和探索性工作流程,可以通过手动修改预测来改进模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
I see what you did there: Understanding when to trust a ML model with NOVA
In this demo paper we present NOVA, a machine learning and explanation interface that focuses on the automated analysis of social interactions. NOVA combines Cooperative Machine Learning (CML) and explainable AI (XAI) methods to reduce manual labelling efforts while simultaneously generating an intuitive understanding of the learning process of a classification system. Therefore, NOVA features a semi-automated labelling process in which users are provided with immediate visual feedback on the predictions, which gives insights into the strengths and weaknesses of the underlying classification system. Following an interactive and exploratory workflow, the performance of the model can be improved by manual revision of the predictions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信