dssm:大规模被动DNS安全监控框架

Samuel Marchal, J. François, C. Wagner, R. State, A. Dulaunoy, T. Engel, O. Festor
{"title":"dssm:大规模被动DNS安全监控框架","authors":"Samuel Marchal, J. François, C. Wagner, R. State, A. Dulaunoy, T. Engel, O. Festor","doi":"10.1109/NOMS.2012.6212019","DOIUrl":null,"url":null,"abstract":"We present a monitoring approach and the supporting software architecture for passive DNS traffic. Monitoring DNS traffic can reveal essential network and system level activity profiles. Worm infected and botnet participating hosts can be identified and malicious backdoor communications can be detected. Any passive DNS monitoring solution needs to address several challenges that range from architectural approaches for dealing with large volumes of data up to specific Data Mining approaches for this purpose. We describe a framework that leverages state of the art distributed processing facilities with clustering techniques in order to detect anomalies in both online and offline DNS traffic. This framework entitled DNSSM is implemented and operational on several networks. We validate the framework against two large trace sets.","PeriodicalId":364494,"journal":{"name":"2012 IEEE Network Operations and Management Symposium","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"DNSSM: A large scale passive DNS security monitoring framework\",\"authors\":\"Samuel Marchal, J. François, C. Wagner, R. State, A. Dulaunoy, T. Engel, O. Festor\",\"doi\":\"10.1109/NOMS.2012.6212019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a monitoring approach and the supporting software architecture for passive DNS traffic. Monitoring DNS traffic can reveal essential network and system level activity profiles. Worm infected and botnet participating hosts can be identified and malicious backdoor communications can be detected. Any passive DNS monitoring solution needs to address several challenges that range from architectural approaches for dealing with large volumes of data up to specific Data Mining approaches for this purpose. We describe a framework that leverages state of the art distributed processing facilities with clustering techniques in order to detect anomalies in both online and offline DNS traffic. This framework entitled DNSSM is implemented and operational on several networks. We validate the framework against two large trace sets.\",\"PeriodicalId\":364494,\"journal\":{\"name\":\"2012 IEEE Network Operations and Management Symposium\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Network Operations and Management Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NOMS.2012.6212019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Network Operations and Management Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NOMS.2012.6212019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

我们提出了一种被动DNS流量的监控方法和支持的软件架构。监视DNS流量可以揭示基本的网络和系统级活动配置文件。可以识别受蠕虫感染和僵尸网络参与的主机,检测恶意后门通信。任何被动DNS监视解决方案都需要解决几个挑战,从处理大量数据的体系结构方法到为此目的的特定数据挖掘方法。我们描述了一个框架,它利用最先进的分布式处理设施和集群技术来检测在线和离线DNS流量中的异常情况。这个名为dssm的框架在几个网络上实现和运行。我们根据两个大型跟踪集验证框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DNSSM: A large scale passive DNS security monitoring framework
We present a monitoring approach and the supporting software architecture for passive DNS traffic. Monitoring DNS traffic can reveal essential network and system level activity profiles. Worm infected and botnet participating hosts can be identified and malicious backdoor communications can be detected. Any passive DNS monitoring solution needs to address several challenges that range from architectural approaches for dealing with large volumes of data up to specific Data Mining approaches for this purpose. We describe a framework that leverages state of the art distributed processing facilities with clustering techniques in order to detect anomalies in both online and offline DNS traffic. This framework entitled DNSSM is implemented and operational on several networks. We validate the framework against two large trace sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信