基于混合进化算法的混合数据集特征加权聚类

D. Dutta, P. Dutta, J. Sil
{"title":"基于混合进化算法的混合数据集特征加权聚类","authors":"D. Dutta, P. Dutta, J. Sil","doi":"10.1109/INDCON.2013.6726029","DOIUrl":null,"url":null,"abstract":"This paper proposes a weighted (W) k-prototype (KP) Multi Objective Genetic Algorithm (MOGA) (W - KP - MOGA) that can automatically evolve feature weights (based on importance of features in cluster) and clustering solutions. Here we are hybridizing KP with MOGA. Minimization of Homogeneity (H) and maximization of Separation (S) are two measures of optimization. For comparison purpose we have also implemented KP and KP - MOGA. Testing by different real world data set with different clustering validity indices shows the superiority of W - KP - MOGA.","PeriodicalId":313185,"journal":{"name":"2013 Annual IEEE India Conference (INDICON)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feature weighted clustering of mixed data sets by hybrid evolutionary algorithm\",\"authors\":\"D. Dutta, P. Dutta, J. Sil\",\"doi\":\"10.1109/INDCON.2013.6726029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a weighted (W) k-prototype (KP) Multi Objective Genetic Algorithm (MOGA) (W - KP - MOGA) that can automatically evolve feature weights (based on importance of features in cluster) and clustering solutions. Here we are hybridizing KP with MOGA. Minimization of Homogeneity (H) and maximization of Separation (S) are two measures of optimization. For comparison purpose we have also implemented KP and KP - MOGA. Testing by different real world data set with different clustering validity indices shows the superiority of W - KP - MOGA.\",\"PeriodicalId\":313185,\"journal\":{\"name\":\"2013 Annual IEEE India Conference (INDICON)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Annual IEEE India Conference (INDICON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDCON.2013.6726029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Annual IEEE India Conference (INDICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDCON.2013.6726029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种加权(W) k-原型(KP)多目标遗传算法(MOGA) (W - KP - MOGA),该算法能够自动进化特征权重(基于聚类中特征的重要性)和聚类解。这是KP和MOGA的杂化。同质性最小化(H)和分离性最大化(S)是优化的两个度量。为了便于比较,我们还实现了KP和KP - MOGA。用不同的真实数据集和不同的聚类有效性指标进行了检验,证明了W - KP - MOGA的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature weighted clustering of mixed data sets by hybrid evolutionary algorithm
This paper proposes a weighted (W) k-prototype (KP) Multi Objective Genetic Algorithm (MOGA) (W - KP - MOGA) that can automatically evolve feature weights (based on importance of features in cluster) and clustering solutions. Here we are hybridizing KP with MOGA. Minimization of Homogeneity (H) and maximization of Separation (S) are two measures of optimization. For comparison purpose we have also implemented KP and KP - MOGA. Testing by different real world data set with different clustering validity indices shows the superiority of W - KP - MOGA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信