三次图谱的间隙集

Alicia J. Koll'ar, P. Sarnak
{"title":"三次图谱的间隙集","authors":"Alicia J. Koll'ar, P. Sarnak","doi":"10.1090/cams/3","DOIUrl":null,"url":null,"abstract":"<p>We study gaps in the spectra of the adjacency matrices of large finite cubic graphs. It is known that the gap intervals <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis 2 StartRoot 2 EndRoot comma 3 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>2</mml:mn>\n <mml:msqrt>\n <mml:mn>2</mml:mn>\n </mml:msqrt>\n <mml:mo>,</mml:mo>\n <mml:mn>3</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(2 \\sqrt {2},3)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket negative 3 comma negative 2 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>3</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>2</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">[-3,-2)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> achieved in cubic Ramanujan graphs and line graphs are maximal. We give constraints on spectra in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket negative 3 comma 3 right-bracket\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>3</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>3</mml:mn>\n <mml:mo stretchy=\"false\">]</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">[-3,3]</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> which are maximally gapped and construct examples which achieve these bounds. These graphs yield new instances of maximally gapped intervals. We also show that every point in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket negative 3 comma 3 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>3</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>3</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">[-3,3)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> can be gapped by planar cubic graphs. Our results show that the study of spectra of cubic, and even planar cubic, graphs is subtle and very rich.</p>","PeriodicalId":285678,"journal":{"name":"Communications of the American Mathematical Society","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Gap sets for the spectra of cubic graphs\",\"authors\":\"Alicia J. Koll'ar, P. Sarnak\",\"doi\":\"10.1090/cams/3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study gaps in the spectra of the adjacency matrices of large finite cubic graphs. It is known that the gap intervals <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis 2 StartRoot 2 EndRoot comma 3 right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mn>2</mml:mn>\\n <mml:msqrt>\\n <mml:mn>2</mml:mn>\\n </mml:msqrt>\\n <mml:mo>,</mml:mo>\\n <mml:mn>3</mml:mn>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">(2 \\\\sqrt {2},3)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-bracket negative 3 comma negative 2 right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">[</mml:mo>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>3</mml:mn>\\n <mml:mo>,</mml:mo>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>2</mml:mn>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">[-3,-2)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> achieved in cubic Ramanujan graphs and line graphs are maximal. We give constraints on spectra in <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-bracket negative 3 comma 3 right-bracket\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">[</mml:mo>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>3</mml:mn>\\n <mml:mo>,</mml:mo>\\n <mml:mn>3</mml:mn>\\n <mml:mo stretchy=\\\"false\\\">]</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">[-3,3]</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> which are maximally gapped and construct examples which achieve these bounds. These graphs yield new instances of maximally gapped intervals. We also show that every point in <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-bracket negative 3 comma 3 right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">[</mml:mo>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>3</mml:mn>\\n <mml:mo>,</mml:mo>\\n <mml:mn>3</mml:mn>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">[-3,3)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> can be gapped by planar cubic graphs. Our results show that the study of spectra of cubic, and even planar cubic, graphs is subtle and very rich.</p>\",\"PeriodicalId\":285678,\"journal\":{\"name\":\"Communications of the American Mathematical Society\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications of the American Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/cams/3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/cams/3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

研究了大有限三次图邻接矩阵谱中的间隙。已知在三次拉马努金图和线形图中得到的间隙区间(2,2,3)(2 \sqrt{2},3)和[-3,-2)[-3,-2)是极大的。我们给出了在[−3,3][-3,3]区间的谱的最大间隙约束,并构造了达到这些边界的例子。这些图产生了最大间隔的新实例。我们还证明了[−3,3)[-3,3)]中的每一个点都可以被平面三次图隔开。我们的研究结果表明,三次光谱,甚至是平面三次光谱图的研究是微妙而丰富的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gap sets for the spectra of cubic graphs

We study gaps in the spectra of the adjacency matrices of large finite cubic graphs. It is known that the gap intervals ( 2 2 , 3 ) (2 \sqrt {2},3) and [ 3 , 2 ) [-3,-2) achieved in cubic Ramanujan graphs and line graphs are maximal. We give constraints on spectra in [ 3 , 3 ] [-3,3] which are maximally gapped and construct examples which achieve these bounds. These graphs yield new instances of maximally gapped intervals. We also show that every point in [ 3 , 3 ) [-3,3) can be gapped by planar cubic graphs. Our results show that the study of spectra of cubic, and even planar cubic, graphs is subtle and very rich.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信