{"title":"三次图谱的间隙集","authors":"Alicia J. Koll'ar, P. Sarnak","doi":"10.1090/cams/3","DOIUrl":null,"url":null,"abstract":"<p>We study gaps in the spectra of the adjacency matrices of large finite cubic graphs. It is known that the gap intervals <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis 2 StartRoot 2 EndRoot comma 3 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>2</mml:mn>\n <mml:msqrt>\n <mml:mn>2</mml:mn>\n </mml:msqrt>\n <mml:mo>,</mml:mo>\n <mml:mn>3</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(2 \\sqrt {2},3)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket negative 3 comma negative 2 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>3</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>2</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">[-3,-2)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> achieved in cubic Ramanujan graphs and line graphs are maximal. We give constraints on spectra in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket negative 3 comma 3 right-bracket\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>3</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>3</mml:mn>\n <mml:mo stretchy=\"false\">]</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">[-3,3]</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> which are maximally gapped and construct examples which achieve these bounds. These graphs yield new instances of maximally gapped intervals. We also show that every point in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket negative 3 comma 3 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>3</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>3</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">[-3,3)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> can be gapped by planar cubic graphs. Our results show that the study of spectra of cubic, and even planar cubic, graphs is subtle and very rich.</p>","PeriodicalId":285678,"journal":{"name":"Communications of the American Mathematical Society","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Gap sets for the spectra of cubic graphs\",\"authors\":\"Alicia J. Koll'ar, P. Sarnak\",\"doi\":\"10.1090/cams/3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study gaps in the spectra of the adjacency matrices of large finite cubic graphs. It is known that the gap intervals <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis 2 StartRoot 2 EndRoot comma 3 right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mn>2</mml:mn>\\n <mml:msqrt>\\n <mml:mn>2</mml:mn>\\n </mml:msqrt>\\n <mml:mo>,</mml:mo>\\n <mml:mn>3</mml:mn>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">(2 \\\\sqrt {2},3)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-bracket negative 3 comma negative 2 right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">[</mml:mo>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>3</mml:mn>\\n <mml:mo>,</mml:mo>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>2</mml:mn>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">[-3,-2)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> achieved in cubic Ramanujan graphs and line graphs are maximal. We give constraints on spectra in <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-bracket negative 3 comma 3 right-bracket\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">[</mml:mo>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>3</mml:mn>\\n <mml:mo>,</mml:mo>\\n <mml:mn>3</mml:mn>\\n <mml:mo stretchy=\\\"false\\\">]</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">[-3,3]</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> which are maximally gapped and construct examples which achieve these bounds. These graphs yield new instances of maximally gapped intervals. We also show that every point in <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-bracket negative 3 comma 3 right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">[</mml:mo>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>3</mml:mn>\\n <mml:mo>,</mml:mo>\\n <mml:mn>3</mml:mn>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">[-3,3)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> can be gapped by planar cubic graphs. Our results show that the study of spectra of cubic, and even planar cubic, graphs is subtle and very rich.</p>\",\"PeriodicalId\":285678,\"journal\":{\"name\":\"Communications of the American Mathematical Society\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications of the American Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/cams/3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/cams/3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We study gaps in the spectra of the adjacency matrices of large finite cubic graphs. It is known that the gap intervals (22,3)(2 \sqrt {2},3) and [−3,−2)[-3,-2) achieved in cubic Ramanujan graphs and line graphs are maximal. We give constraints on spectra in [−3,3][-3,3] which are maximally gapped and construct examples which achieve these bounds. These graphs yield new instances of maximally gapped intervals. We also show that every point in [−3,3)[-3,3) can be gapped by planar cubic graphs. Our results show that the study of spectra of cubic, and even planar cubic, graphs is subtle and very rich.