Ti-6Al-4V合金车削能耗分析

S. H. Imran Jaffery, M. Younas, Mushtaq Khan, Liaqat Ali
{"title":"Ti-6Al-4V合金车削能耗分析","authors":"S. H. Imran Jaffery, M. Younas, Mushtaq Khan, Liaqat Ali","doi":"10.1109/ICMIMT49010.2020.9041194","DOIUrl":null,"url":null,"abstract":"One of the major concerns in manufacturing industries include the amount of energy consumed during machining processes. Therefore, the study of the specific energy during machining must be analyzed in relation to the process parameters (feed rate, speed and depth of cut). This work demonstrates the analysis of specific cutting energy (SCE) and cutting power during titanium alloys machining under dry conditions. Turning experiments with uncoated carbide inserts were performed applying Taguchi Design of Experiments technique and analyzed the effect of speed, feed and depth of cut during turning Ti-6Al-4V titanium alloys. ANOVA was done to find out the influence of the machining parameters on energy consumption. The outcome of this analysis indicates that feed rate is the highly dominant factor responsible for the SCE of a machine tool, whereas, cutting speed was found as the influential factor affecting the power during the machining process. The environmental and economic performance for a machining process may be significantly improved by reducing energy consumption using appropriate machining conditions.","PeriodicalId":377249,"journal":{"name":"2020 IEEE 11th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Energy Consumption Analysis in Turning Ti-6Al-4V alloy\",\"authors\":\"S. H. Imran Jaffery, M. Younas, Mushtaq Khan, Liaqat Ali\",\"doi\":\"10.1109/ICMIMT49010.2020.9041194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the major concerns in manufacturing industries include the amount of energy consumed during machining processes. Therefore, the study of the specific energy during machining must be analyzed in relation to the process parameters (feed rate, speed and depth of cut). This work demonstrates the analysis of specific cutting energy (SCE) and cutting power during titanium alloys machining under dry conditions. Turning experiments with uncoated carbide inserts were performed applying Taguchi Design of Experiments technique and analyzed the effect of speed, feed and depth of cut during turning Ti-6Al-4V titanium alloys. ANOVA was done to find out the influence of the machining parameters on energy consumption. The outcome of this analysis indicates that feed rate is the highly dominant factor responsible for the SCE of a machine tool, whereas, cutting speed was found as the influential factor affecting the power during the machining process. The environmental and economic performance for a machining process may be significantly improved by reducing energy consumption using appropriate machining conditions.\",\"PeriodicalId\":377249,\"journal\":{\"name\":\"2020 IEEE 11th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 11th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMIMT49010.2020.9041194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 11th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMIMT49010.2020.9041194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在制造业中,主要关注的问题之一是加工过程中消耗的能量。因此,加工过程中比能的研究必须与工艺参数(进给速度、切削速度和切削深度)有关。本文对干燥条件下钛合金加工的切削能量和切削功率进行了分析。采用田口试验设计技术,对Ti-6Al-4V钛合金进行了无涂层硬质合金刀片车削试验,分析了切削速度、进给量和切削深度对钛合金车削的影响。利用方差分析分析了加工参数对能耗的影响。分析结果表明,进给速度是影响机床SCE的主要因素,而切削速度是影响加工过程中功率的主要因素。通过使用适当的加工条件降低能耗,可以显著提高加工过程的环境和经济性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy Consumption Analysis in Turning Ti-6Al-4V alloy
One of the major concerns in manufacturing industries include the amount of energy consumed during machining processes. Therefore, the study of the specific energy during machining must be analyzed in relation to the process parameters (feed rate, speed and depth of cut). This work demonstrates the analysis of specific cutting energy (SCE) and cutting power during titanium alloys machining under dry conditions. Turning experiments with uncoated carbide inserts were performed applying Taguchi Design of Experiments technique and analyzed the effect of speed, feed and depth of cut during turning Ti-6Al-4V titanium alloys. ANOVA was done to find out the influence of the machining parameters on energy consumption. The outcome of this analysis indicates that feed rate is the highly dominant factor responsible for the SCE of a machine tool, whereas, cutting speed was found as the influential factor affecting the power during the machining process. The environmental and economic performance for a machining process may be significantly improved by reducing energy consumption using appropriate machining conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信