具有共享L2指令缓存的多核处理器的WCET分析

Jun Yan, Wei Zhang
{"title":"具有共享L2指令缓存的多核处理器的WCET分析","authors":"Jun Yan, Wei Zhang","doi":"10.1109/RTAS.2008.6","DOIUrl":null,"url":null,"abstract":"Multi-core chips have been increasingly adopted by microprocessor industry. For real-time systems to safely harness the potential of multi-core computing, designers must be able to accurately obtain the worst-case execution time (WCET) of applications running on multi-core platforms, which is very challenging due to the possible runtime inter-core interferences in using shared resources such as the shared L2 caches. As the first step toward time-predictable multi-core computing, this paper presents a novel approach to bounding the worst-case performance for threads running on multi-core processors with shared L2 instruction caches. The idea of our approach is to compute the worst-case instruction access interferences between different threads based on the program control flow information of each thread, which can be statically analyzed. Our experiments indicate that the proposed approach can reasonably estimate the worst- case shared L2 instruction cache misses by considering inter-thread instruction conflicts. Also, the WCET of applications running on multi-core processors estimated by our approach is much better than the estimation by simply assuming all L2 instruction accesses are misses.","PeriodicalId":130593,"journal":{"name":"2008 IEEE Real-Time and Embedded Technology and Applications Symposium","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"172","resultStr":"{\"title\":\"WCET Analysis for Multi-Core Processors with Shared L2 Instruction Caches\",\"authors\":\"Jun Yan, Wei Zhang\",\"doi\":\"10.1109/RTAS.2008.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-core chips have been increasingly adopted by microprocessor industry. For real-time systems to safely harness the potential of multi-core computing, designers must be able to accurately obtain the worst-case execution time (WCET) of applications running on multi-core platforms, which is very challenging due to the possible runtime inter-core interferences in using shared resources such as the shared L2 caches. As the first step toward time-predictable multi-core computing, this paper presents a novel approach to bounding the worst-case performance for threads running on multi-core processors with shared L2 instruction caches. The idea of our approach is to compute the worst-case instruction access interferences between different threads based on the program control flow information of each thread, which can be statically analyzed. Our experiments indicate that the proposed approach can reasonably estimate the worst- case shared L2 instruction cache misses by considering inter-thread instruction conflicts. Also, the WCET of applications running on multi-core processors estimated by our approach is much better than the estimation by simply assuming all L2 instruction accesses are misses.\",\"PeriodicalId\":130593,\"journal\":{\"name\":\"2008 IEEE Real-Time and Embedded Technology and Applications Symposium\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"172\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Real-Time and Embedded Technology and Applications Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTAS.2008.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Real-Time and Embedded Technology and Applications Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTAS.2008.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 172

摘要

多核芯片已被微处理器行业越来越多地采用。为了使实时系统能够安全地利用多核计算的潜力,设计人员必须能够准确地获得在多核平台上运行的应用程序的最坏情况执行时间(WCET),这是非常具有挑战性的,因为在使用共享资源(如共享L2缓存)时可能存在运行时核间干扰。作为时间可预测多核计算的第一步,本文提出了一种新的方法来限制在具有共享L2指令缓存的多核处理器上运行的线程的最坏情况性能。该方法的思想是根据每个线程的程序控制流信息计算不同线程之间最坏情况下的指令访问干扰,并对其进行静态分析。实验表明,通过考虑线程间指令冲突,该方法可以合理地估计最坏情况下的共享L2指令缓存缺失。此外,通过我们的方法估计的在多核处理器上运行的应用程序的WCET比简单地假设所有L2指令访问都是错误的估计要好得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
WCET Analysis for Multi-Core Processors with Shared L2 Instruction Caches
Multi-core chips have been increasingly adopted by microprocessor industry. For real-time systems to safely harness the potential of multi-core computing, designers must be able to accurately obtain the worst-case execution time (WCET) of applications running on multi-core platforms, which is very challenging due to the possible runtime inter-core interferences in using shared resources such as the shared L2 caches. As the first step toward time-predictable multi-core computing, this paper presents a novel approach to bounding the worst-case performance for threads running on multi-core processors with shared L2 instruction caches. The idea of our approach is to compute the worst-case instruction access interferences between different threads based on the program control flow information of each thread, which can be statically analyzed. Our experiments indicate that the proposed approach can reasonably estimate the worst- case shared L2 instruction cache misses by considering inter-thread instruction conflicts. Also, the WCET of applications running on multi-core processors estimated by our approach is much better than the estimation by simply assuming all L2 instruction accesses are misses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信