{"title":"倾斜平衡尾翼双旋翼无人机增稳控制","authors":"Yurui Xu, Liang Gao, Benshan Liu, Junming Zhang, Yanhe Zhu, Jie Zhao","doi":"10.1109/ICUS55513.2022.9986615","DOIUrl":null,"url":null,"abstract":"In order to improve the stability of the dual-rotor Unmanned Aerial Vehicle (UAV), a balance tail is designed to be equipped on the UAV. With reasonable movement, the balance tail may generate additional force and moment which can promote the UAV to be stable rapidly when the UAV is ready to stop. Firstly, the kinematics and dynamics of the tilt-rotor UAV are modeled by Newton-Euler method, and the relations between the movement of the balance tail and the additional force and moment are deduced. The flight control of tilting dual-rotor UAV is realized. Then, the influences of the balance tail on the dual-rotor UAV are analyzed by the nonlinear simulation under the conditions of different masses of the tail and swing rules. Finally, the tail coordinating with the motor tilting and active control of the tail based on cascade PID are explored for stability augmentation of the UAV, respectively. And the effectiveness of the two methods is verified by simulation.","PeriodicalId":345773,"journal":{"name":"2022 IEEE International Conference on Unmanned Systems (ICUS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability Augmentation Control of Tilting Dual-Rotor UAV with Balance Tail\",\"authors\":\"Yurui Xu, Liang Gao, Benshan Liu, Junming Zhang, Yanhe Zhu, Jie Zhao\",\"doi\":\"10.1109/ICUS55513.2022.9986615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve the stability of the dual-rotor Unmanned Aerial Vehicle (UAV), a balance tail is designed to be equipped on the UAV. With reasonable movement, the balance tail may generate additional force and moment which can promote the UAV to be stable rapidly when the UAV is ready to stop. Firstly, the kinematics and dynamics of the tilt-rotor UAV are modeled by Newton-Euler method, and the relations between the movement of the balance tail and the additional force and moment are deduced. The flight control of tilting dual-rotor UAV is realized. Then, the influences of the balance tail on the dual-rotor UAV are analyzed by the nonlinear simulation under the conditions of different masses of the tail and swing rules. Finally, the tail coordinating with the motor tilting and active control of the tail based on cascade PID are explored for stability augmentation of the UAV, respectively. And the effectiveness of the two methods is verified by simulation.\",\"PeriodicalId\":345773,\"journal\":{\"name\":\"2022 IEEE International Conference on Unmanned Systems (ICUS)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Unmanned Systems (ICUS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICUS55513.2022.9986615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Unmanned Systems (ICUS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUS55513.2022.9986615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stability Augmentation Control of Tilting Dual-Rotor UAV with Balance Tail
In order to improve the stability of the dual-rotor Unmanned Aerial Vehicle (UAV), a balance tail is designed to be equipped on the UAV. With reasonable movement, the balance tail may generate additional force and moment which can promote the UAV to be stable rapidly when the UAV is ready to stop. Firstly, the kinematics and dynamics of the tilt-rotor UAV are modeled by Newton-Euler method, and the relations between the movement of the balance tail and the additional force and moment are deduced. The flight control of tilting dual-rotor UAV is realized. Then, the influences of the balance tail on the dual-rotor UAV are analyzed by the nonlinear simulation under the conditions of different masses of the tail and swing rules. Finally, the tail coordinating with the motor tilting and active control of the tail based on cascade PID are explored for stability augmentation of the UAV, respectively. And the effectiveness of the two methods is verified by simulation.