基于poi嵌入方法的用户优先旅游推荐

N. Ho, Kwan Hui Lim
{"title":"基于poi嵌入方法的用户优先旅游推荐","authors":"N. Ho, Kwan Hui Lim","doi":"10.1145/3397482.3450717","DOIUrl":null,"url":null,"abstract":"Tour itinerary planning and recommendation are challenging tasks for tourists in unfamiliar countries. Many tour recommenders only consider broad POI categories and do not align well with users’ preferences and other locational constraints. We propose an algorithm to recommend personalized tours using POI-embedding methods, which provides a finer representation of POI types. Our recommendation algorithm will generate a sequence of POIs that optimizes time and locational constraints, as well as user’s preferences based on past trajectories from similar tourists. Our tour recommendation algorithm is modelled as a word embedding model in natural language processing, coupled with an iterative algorithm for generating itineraries that satisfies time constraints. Using a Flickr dataset of 4 cities, preliminary experimental results show that our algorithm is able to recommend a relevant and accurate itinerary, based on measures of recall, precision and F1-scores.","PeriodicalId":216190,"journal":{"name":"26th International Conference on Intelligent User Interfaces - Companion","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"User Preferential Tour Recommendation Based on POI-Embedding Methods\",\"authors\":\"N. Ho, Kwan Hui Lim\",\"doi\":\"10.1145/3397482.3450717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tour itinerary planning and recommendation are challenging tasks for tourists in unfamiliar countries. Many tour recommenders only consider broad POI categories and do not align well with users’ preferences and other locational constraints. We propose an algorithm to recommend personalized tours using POI-embedding methods, which provides a finer representation of POI types. Our recommendation algorithm will generate a sequence of POIs that optimizes time and locational constraints, as well as user’s preferences based on past trajectories from similar tourists. Our tour recommendation algorithm is modelled as a word embedding model in natural language processing, coupled with an iterative algorithm for generating itineraries that satisfies time constraints. Using a Flickr dataset of 4 cities, preliminary experimental results show that our algorithm is able to recommend a relevant and accurate itinerary, based on measures of recall, precision and F1-scores.\",\"PeriodicalId\":216190,\"journal\":{\"name\":\"26th International Conference on Intelligent User Interfaces - Companion\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"26th International Conference on Intelligent User Interfaces - Companion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3397482.3450717\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"26th International Conference on Intelligent User Interfaces - Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397482.3450717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

对于到陌生国家旅游的游客来说,旅游行程的规划和推荐是一项具有挑战性的任务。许多旅游推荐只考虑广泛的POI类别,并没有很好地与用户的偏好和其他位置限制保持一致。我们提出了一种使用POI嵌入方法推荐个性化旅游的算法,该算法提供了更精细的POI类型表示。我们的推荐算法将生成一系列poi,优化时间和地点约束,以及基于类似游客过去轨迹的用户偏好。我们的旅游推荐算法建模为自然语言处理中的词嵌入模型,结合迭代算法生成满足时间约束的行程。使用4个城市的Flickr数据集,初步实验结果表明,我们的算法能够根据召回率、精确度和f1分数推荐相关且准确的行程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
User Preferential Tour Recommendation Based on POI-Embedding Methods
Tour itinerary planning and recommendation are challenging tasks for tourists in unfamiliar countries. Many tour recommenders only consider broad POI categories and do not align well with users’ preferences and other locational constraints. We propose an algorithm to recommend personalized tours using POI-embedding methods, which provides a finer representation of POI types. Our recommendation algorithm will generate a sequence of POIs that optimizes time and locational constraints, as well as user’s preferences based on past trajectories from similar tourists. Our tour recommendation algorithm is modelled as a word embedding model in natural language processing, coupled with an iterative algorithm for generating itineraries that satisfies time constraints. Using a Flickr dataset of 4 cities, preliminary experimental results show that our algorithm is able to recommend a relevant and accurate itinerary, based on measures of recall, precision and F1-scores.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信