通过适应性突触发生控制信息流和能量使用

W. Levy, Harang Ju, R. Baxter, C. Colbert
{"title":"通过适应性突触发生控制信息流和能量使用","authors":"W. Levy, Harang Ju, R. Baxter, C. Colbert","doi":"10.1109/CISS.2016.7460559","DOIUrl":null,"url":null,"abstract":"The adaptive synaptogenesis algorithm is a mathematically defined, random process that, in its present form, creates a feedforward network of excitatory synapses without supervision. The algorithm is fully local and consists of three separate modification processes: random synapse formation, modification of an existing synapse's strength (both strengthening and weakening), and shedding of very weak synapses. The algorithm is shown to have desirable stability properties; further, the algorithm can be parameterized to control the synaptic energy use by a neuron and to control the net information received by a neuron. In addition to the fundamental mathematics on which the algorithm is based, the interaction of parameter settings with characterized random inputs are described. Finally, specific extensions of the algorithm are suggested.","PeriodicalId":346776,"journal":{"name":"2016 Annual Conference on Information Science and Systems (CISS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Controlling information flow and energy use via adaptive synaptogenesis\",\"authors\":\"W. Levy, Harang Ju, R. Baxter, C. Colbert\",\"doi\":\"10.1109/CISS.2016.7460559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The adaptive synaptogenesis algorithm is a mathematically defined, random process that, in its present form, creates a feedforward network of excitatory synapses without supervision. The algorithm is fully local and consists of three separate modification processes: random synapse formation, modification of an existing synapse's strength (both strengthening and weakening), and shedding of very weak synapses. The algorithm is shown to have desirable stability properties; further, the algorithm can be parameterized to control the synaptic energy use by a neuron and to control the net information received by a neuron. In addition to the fundamental mathematics on which the algorithm is based, the interaction of parameter settings with characterized random inputs are described. Finally, specific extensions of the algorithm are suggested.\",\"PeriodicalId\":346776,\"journal\":{\"name\":\"2016 Annual Conference on Information Science and Systems (CISS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Annual Conference on Information Science and Systems (CISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS.2016.7460559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Annual Conference on Information Science and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2016.7460559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

自适应突触发生算法是一个数学定义的随机过程,以其目前的形式,在没有监督的情况下创建一个兴奋性突触的前馈网络。该算法是完全局部的,由三个独立的修改过程组成:随机突触形成,修改现有突触的强度(加强和减弱),以及脱落非常弱的突触。结果表明,该算法具有良好的稳定性;此外,该算法可以参数化以控制神经元的突触能量使用和控制神经元接收的净信息。除了该算法所基于的基本数学之外,还描述了参数设置与特征随机输入的相互作用。最后,给出了算法的具体扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Controlling information flow and energy use via adaptive synaptogenesis
The adaptive synaptogenesis algorithm is a mathematically defined, random process that, in its present form, creates a feedforward network of excitatory synapses without supervision. The algorithm is fully local and consists of three separate modification processes: random synapse formation, modification of an existing synapse's strength (both strengthening and weakening), and shedding of very weak synapses. The algorithm is shown to have desirable stability properties; further, the algorithm can be parameterized to control the synaptic energy use by a neuron and to control the net information received by a neuron. In addition to the fundamental mathematics on which the algorithm is based, the interaction of parameter settings with characterized random inputs are described. Finally, specific extensions of the algorithm are suggested.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信