基于方向梯度直方图和深度神经网络的两种车辆检测方法的比较

Fadwa Benjelloun, K. Abbad, M. A. Sabri, A. Aarab, Ali Yahyaouy
{"title":"基于方向梯度直方图和深度神经网络的两种车辆检测方法的比较","authors":"Fadwa Benjelloun, K. Abbad, M. A. Sabri, A. Aarab, Ali Yahyaouy","doi":"10.1109/ISACS48493.2019.9068925","DOIUrl":null,"url":null,"abstract":"In this article, we present two approaches to mobile object recognition in a real-time video scene. The first method is based on deep learning to detect moving objects. The second method is based on extracting the HOG characteristics associated with each object. The results obtained by these two methods are interesting in the detection of moving objects. For both approaches, the classification phase is done by the Alexnet neuron network.","PeriodicalId":312521,"journal":{"name":"2019 International Conference on Intelligent Systems and Advanced Computing Sciences (ISACS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparison of two vehicle detection methods based on the oriented gradients histogram and the deep neural network\",\"authors\":\"Fadwa Benjelloun, K. Abbad, M. A. Sabri, A. Aarab, Ali Yahyaouy\",\"doi\":\"10.1109/ISACS48493.2019.9068925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we present two approaches to mobile object recognition in a real-time video scene. The first method is based on deep learning to detect moving objects. The second method is based on extracting the HOG characteristics associated with each object. The results obtained by these two methods are interesting in the detection of moving objects. For both approaches, the classification phase is done by the Alexnet neuron network.\",\"PeriodicalId\":312521,\"journal\":{\"name\":\"2019 International Conference on Intelligent Systems and Advanced Computing Sciences (ISACS)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Intelligent Systems and Advanced Computing Sciences (ISACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISACS48493.2019.9068925\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Intelligent Systems and Advanced Computing Sciences (ISACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISACS48493.2019.9068925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提出了两种实时视频场景中移动目标识别的方法。第一种方法是基于深度学习来检测运动物体。第二种方法是基于提取与每个对象相关的HOG特征。这两种方法得到的结果在运动物体的检测中很有意义。对于这两种方法,分类阶段是由Alexnet神经元网络完成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of two vehicle detection methods based on the oriented gradients histogram and the deep neural network
In this article, we present two approaches to mobile object recognition in a real-time video scene. The first method is based on deep learning to detect moving objects. The second method is based on extracting the HOG characteristics associated with each object. The results obtained by these two methods are interesting in the detection of moving objects. For both approaches, the classification phase is done by the Alexnet neuron network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信