利用磁共振光谱信号对代谢性脑疾病进行模糊分类

S. Z. Mahmoodabadi, J. Alirezaie, P. Babyn
{"title":"利用磁共振光谱信号对代谢性脑疾病进行模糊分类","authors":"S. Z. Mahmoodabadi, J. Alirezaie, P. Babyn","doi":"10.1109/NAFIPS.2008.4531247","DOIUrl":null,"url":null,"abstract":"A suspected metabolic brain disorder presents a difficult challenge to the physician and the patient. We have developed a fully automated system in order to classify the Magnetic Resonance Spectroscopy (MRS) signals. Novel fuzzy rules and a fuzzy classifier have been designed in this study to categorize metabolic brain diseases in children. The sensitivity and positive predictivity of 75% plusmn 43 in detecting five metabolic brain diseases have been achieved.","PeriodicalId":430770,"journal":{"name":"NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fuzzy classification of metabolic brain diseases utilizing MR Spectroscopy signals\",\"authors\":\"S. Z. Mahmoodabadi, J. Alirezaie, P. Babyn\",\"doi\":\"10.1109/NAFIPS.2008.4531247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A suspected metabolic brain disorder presents a difficult challenge to the physician and the patient. We have developed a fully automated system in order to classify the Magnetic Resonance Spectroscopy (MRS) signals. Novel fuzzy rules and a fuzzy classifier have been designed in this study to categorize metabolic brain diseases in children. The sensitivity and positive predictivity of 75% plusmn 43 in detecting five metabolic brain diseases have been achieved.\",\"PeriodicalId\":430770,\"journal\":{\"name\":\"NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAFIPS.2008.4531247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2008.4531247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

疑似代谢性脑紊乱对医生和病人来说都是一个困难的挑战。我们已经开发了一个全自动系统,以分类磁共振光谱(MRS)信号。本研究设计了新的模糊规则和模糊分类器对儿童代谢性脑疾病进行分类。在检测5种代谢性脑疾病时,达到了75%的灵敏度和阳性预测值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy classification of metabolic brain diseases utilizing MR Spectroscopy signals
A suspected metabolic brain disorder presents a difficult challenge to the physician and the patient. We have developed a fully automated system in order to classify the Magnetic Resonance Spectroscopy (MRS) signals. Novel fuzzy rules and a fuzzy classifier have been designed in this study to categorize metabolic brain diseases in children. The sensitivity and positive predictivity of 75% plusmn 43 in detecting five metabolic brain diseases have been achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信