基于稀疏贝叶斯学习的拖曳阵列快速到达方向估计

Zican Zhang, Xiang Pan
{"title":"基于稀疏贝叶斯学习的拖曳阵列快速到达方向估计","authors":"Zican Zhang, Xiang Pan","doi":"10.1109/CMVIT57620.2023.00014","DOIUrl":null,"url":null,"abstract":"In order to solve the problem of slow convergence of the direction of arrival (DOA) estimation algorithm based on sparse Bayesian learning (SBL), a fast converging SBL(FCSBL) of DOA estimation algorithm is obtained by introducing an approximate posterior covariance in hyperparameter iteration. During maneuvering turns, the towed array is modeled as a parabolic array to correct the distortion of array shape. Taking the bow of the array as a hyperparameter for SBL, this paper proposes a fast converging adaptive bow sparse Bayesian learning algorithm, to jointly estimate array shape and DOAs from acoustic data. Numerical simulation and MAPEX2000 experimental data processing results show that FC-ABSBL performs well in detection of weak targets and estimation of the array bow during maneuvering turns with low computational load.","PeriodicalId":191655,"journal":{"name":"2023 7th International Conference on Machine Vision and Information Technology (CMVIT)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast Estimation of Direction of Arrival for Towed Array Based on Sparse Bayesian Learning\",\"authors\":\"Zican Zhang, Xiang Pan\",\"doi\":\"10.1109/CMVIT57620.2023.00014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to solve the problem of slow convergence of the direction of arrival (DOA) estimation algorithm based on sparse Bayesian learning (SBL), a fast converging SBL(FCSBL) of DOA estimation algorithm is obtained by introducing an approximate posterior covariance in hyperparameter iteration. During maneuvering turns, the towed array is modeled as a parabolic array to correct the distortion of array shape. Taking the bow of the array as a hyperparameter for SBL, this paper proposes a fast converging adaptive bow sparse Bayesian learning algorithm, to jointly estimate array shape and DOAs from acoustic data. Numerical simulation and MAPEX2000 experimental data processing results show that FC-ABSBL performs well in detection of weak targets and estimation of the array bow during maneuvering turns with low computational load.\",\"PeriodicalId\":191655,\"journal\":{\"name\":\"2023 7th International Conference on Machine Vision and Information Technology (CMVIT)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 7th International Conference on Machine Vision and Information Technology (CMVIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CMVIT57620.2023.00014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 7th International Conference on Machine Vision and Information Technology (CMVIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CMVIT57620.2023.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在机动转弯时,将拖曳阵建模为抛物线阵,以纠正阵形畸变。本文以阵列弓形作为SBL的超参数,提出了一种快速收敛的自适应弓形稀疏贝叶斯学习算法,从声学数据中联合估计阵列形状和doa。数值仿真和MAPEX2000实验数据处理结果表明,FC-ABSBL在机动转弯过程中具有较好的弱目标检测和阵首估计性能,且计算量小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Estimation of Direction of Arrival for Towed Array Based on Sparse Bayesian Learning
In order to solve the problem of slow convergence of the direction of arrival (DOA) estimation algorithm based on sparse Bayesian learning (SBL), a fast converging SBL(FCSBL) of DOA estimation algorithm is obtained by introducing an approximate posterior covariance in hyperparameter iteration. During maneuvering turns, the towed array is modeled as a parabolic array to correct the distortion of array shape. Taking the bow of the array as a hyperparameter for SBL, this paper proposes a fast converging adaptive bow sparse Bayesian learning algorithm, to jointly estimate array shape and DOAs from acoustic data. Numerical simulation and MAPEX2000 experimental data processing results show that FC-ABSBL performs well in detection of weak targets and estimation of the array bow during maneuvering turns with low computational load.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信