资产:知识图中实体类型的半监督方法

Hamada M. Zahera, Stefan Heindorf, A. N. Ngomo
{"title":"资产:知识图中实体类型的半监督方法","authors":"Hamada M. Zahera, Stefan Heindorf, A. N. Ngomo","doi":"10.1145/3460210.3493563","DOIUrl":null,"url":null,"abstract":"Entity typing in knowledge graphs (KGs) aims to infer missing types of entities and might be considered one of the most significant tasks of knowledge graph construction since type information is highly relevant for querying, quality assurance, and KG applications. While supervised learning approaches for entity typing have been proposed, they require large amounts of (manually) labeled data, which can be expensive to obtain. In this paper, we propose a novel approach for KG entity typing that leverages semi-supervised learning from massive unlabeled data. Our approach follows a teacher-student paradigm that allows combining a small amount of labeled data with a large amount of unlabeled data to boost performance. We conduct several experiments on two benchmarking datasets (FB15k-ET and YAGO43k-ET). Our results demonstrate the effectiveness of our approach in improving entity typing in KGs. Given type information for only 1% of entities, our approach ASSET predicts missing types with a F1-score of 0.47 and 0.64 on the datasets FB15k-ET and YAGO43k-ET, respectively, outperforming supervised baselines.","PeriodicalId":377331,"journal":{"name":"Proceedings of the 11th on Knowledge Capture Conference","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"ASSET: A Semi-supervised Approach for Entity Typing in Knowledge Graphs\",\"authors\":\"Hamada M. Zahera, Stefan Heindorf, A. N. Ngomo\",\"doi\":\"10.1145/3460210.3493563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Entity typing in knowledge graphs (KGs) aims to infer missing types of entities and might be considered one of the most significant tasks of knowledge graph construction since type information is highly relevant for querying, quality assurance, and KG applications. While supervised learning approaches for entity typing have been proposed, they require large amounts of (manually) labeled data, which can be expensive to obtain. In this paper, we propose a novel approach for KG entity typing that leverages semi-supervised learning from massive unlabeled data. Our approach follows a teacher-student paradigm that allows combining a small amount of labeled data with a large amount of unlabeled data to boost performance. We conduct several experiments on two benchmarking datasets (FB15k-ET and YAGO43k-ET). Our results demonstrate the effectiveness of our approach in improving entity typing in KGs. Given type information for only 1% of entities, our approach ASSET predicts missing types with a F1-score of 0.47 and 0.64 on the datasets FB15k-ET and YAGO43k-ET, respectively, outperforming supervised baselines.\",\"PeriodicalId\":377331,\"journal\":{\"name\":\"Proceedings of the 11th on Knowledge Capture Conference\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th on Knowledge Capture Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3460210.3493563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th on Knowledge Capture Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3460210.3493563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

知识图(KGs)中的实体类型旨在推断缺失的实体类型,并且可能被认为是知识图构建中最重要的任务之一,因为类型信息与查询、质量保证和KG应用高度相关。虽然已经提出了用于实体类型的监督学习方法,但它们需要大量(手动)标记数据,而这些数据的获取成本很高。在本文中,我们提出了一种新的KG实体分类方法,该方法利用了来自大量未标记数据的半监督学习。我们的方法遵循师生模式,允许将少量标记数据与大量未标记数据相结合以提高性能。我们在两个基准数据集(FB15k-ET和YAGO43k-ET)上进行了多次实验。我们的结果证明了我们的方法在改善kg实体分类方面的有效性。给定仅1%实体的类型信息,我们的方法ASSET在数据集FB15k-ET和YAGO43k-ET上预测缺失类型的f1得分分别为0.47和0.64,优于监督基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ASSET: A Semi-supervised Approach for Entity Typing in Knowledge Graphs
Entity typing in knowledge graphs (KGs) aims to infer missing types of entities and might be considered one of the most significant tasks of knowledge graph construction since type information is highly relevant for querying, quality assurance, and KG applications. While supervised learning approaches for entity typing have been proposed, they require large amounts of (manually) labeled data, which can be expensive to obtain. In this paper, we propose a novel approach for KG entity typing that leverages semi-supervised learning from massive unlabeled data. Our approach follows a teacher-student paradigm that allows combining a small amount of labeled data with a large amount of unlabeled data to boost performance. We conduct several experiments on two benchmarking datasets (FB15k-ET and YAGO43k-ET). Our results demonstrate the effectiveness of our approach in improving entity typing in KGs. Given type information for only 1% of entities, our approach ASSET predicts missing types with a F1-score of 0.47 and 0.64 on the datasets FB15k-ET and YAGO43k-ET, respectively, outperforming supervised baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信