空间统计的敏感性分析:在空间预测中发现有影响的观测值

Seung-Bae Choi, Y. Tanaka
{"title":"空间统计的敏感性分析:在空间预测中发现有影响的观测值","authors":"Seung-Bae Choi, Y. Tanaka","doi":"10.5183/JJSCS1988.13.25","DOIUrl":null,"url":null,"abstract":"An important problem in spatial statistics is to predict the unobserved value z(s0) at a specified location so based on the information of n observations z(sƒ¿), α = 1, ¥¥¥, n. It can be achieved in three stages of (1) estimating the variograms, (2) fitting a model to the estimated variograms, and (3) applying the so-called ordinary (or universal) kriging. The present article proposes a method to detect influential observations in variogram estimation, variogram model fitting to the estimated variograms, and spatial prediction using the fitted variogram model. To do this, we derive the influence functions for statistics in the above three stages assuming that the underlying process of the observed spatial data is second-order stationary. A real numerical example is analyzed to show the validity or usefulness of the proposed influence functions. Comparison is made with the influence function derived by Gunst and Hartfield (1997).","PeriodicalId":338719,"journal":{"name":"Journal of the Japanese Society of Computational Statistics","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SENSITIVITY ANALYSIS IN SPATIAL STATISTICS : DETECTING INFLUENTIAL OBSERVATIONS IN SPATIAL PREDICTION\",\"authors\":\"Seung-Bae Choi, Y. Tanaka\",\"doi\":\"10.5183/JJSCS1988.13.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An important problem in spatial statistics is to predict the unobserved value z(s0) at a specified location so based on the information of n observations z(sƒ¿), α = 1, ¥¥¥, n. It can be achieved in three stages of (1) estimating the variograms, (2) fitting a model to the estimated variograms, and (3) applying the so-called ordinary (or universal) kriging. The present article proposes a method to detect influential observations in variogram estimation, variogram model fitting to the estimated variograms, and spatial prediction using the fitted variogram model. To do this, we derive the influence functions for statistics in the above three stages assuming that the underlying process of the observed spatial data is second-order stationary. A real numerical example is analyzed to show the validity or usefulness of the proposed influence functions. Comparison is made with the influence function derived by Gunst and Hartfield (1997).\",\"PeriodicalId\":338719,\"journal\":{\"name\":\"Journal of the Japanese Society of Computational Statistics\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Japanese Society of Computational Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5183/JJSCS1988.13.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japanese Society of Computational Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5183/JJSCS1988.13.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

空间统计中的一个重要问题是根据n个观测值z(s (s), α = 1,¥¥,n的信息预测指定位置的未观测值z(50)。它可以通过三个阶段来实现:(1)估计变异数,(2)对估计的变异数拟合模型,(3)应用所谓的普通(或普遍)克里格。本文提出了一种方法来检测变异函数估计中的影响观测值,变异函数模型拟合到估计的变异函数,并利用拟合的变异函数模型进行空间预测。为此,我们假设观测到的空间数据的潜在过程是二阶平稳的,推导出上述三个阶段的统计影响函数。算例分析表明了所提影响函数的有效性和实用性。与Gunst和Hartfield(1997)导出的影响函数进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SENSITIVITY ANALYSIS IN SPATIAL STATISTICS : DETECTING INFLUENTIAL OBSERVATIONS IN SPATIAL PREDICTION
An important problem in spatial statistics is to predict the unobserved value z(s0) at a specified location so based on the information of n observations z(sƒ¿), α = 1, ¥¥¥, n. It can be achieved in three stages of (1) estimating the variograms, (2) fitting a model to the estimated variograms, and (3) applying the so-called ordinary (or universal) kriging. The present article proposes a method to detect influential observations in variogram estimation, variogram model fitting to the estimated variograms, and spatial prediction using the fitted variogram model. To do this, we derive the influence functions for statistics in the above three stages assuming that the underlying process of the observed spatial data is second-order stationary. A real numerical example is analyzed to show the validity or usefulness of the proposed influence functions. Comparison is made with the influence function derived by Gunst and Hartfield (1997).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信